For this notes, $x=[x_1,\ldots,x_m]^T,y=[y_1,\ldots,y_n]^T$ are mixed strategy probability (column) vectors with $x_i\geq 0$ for all $i,y_j\geq 0$ for all j, and $\sum_i x_i=1,\sum_j y_j=1$, with v^T for the transpose of vector v. Also, $\mathbf{1}=[1,\ldots,1]^T$, the vector of all entries equal to 1 for an appropriate dimension depending on context. Thus, $\sum_i x_i=x^T\mathbf{1}=\mathbf{1}^Tx$. Let $A=A_{m\times n}=[a_{ij}]$ be the payoff matrix for Player X against Player Y in a zero-sum game, A_j be the column vectors of the matrix A and a_i be the row vectors of A, i.e. $A=[A_1,A_2,\ldots,A_n]$ and $A^T=[a_1^T,\ldots,a_m^T]$. Then, the expected payoff per play for Player X is $E(x,y)=\sum_{i,j}a_{ij}x_iy_j$ which can be summed in two different orders, each in a dot product form: $E(x,y)=\sum_i x_i(\sum_j a_{ij}y_j)=x^T(Ay)$ and $E(x,y)=\sum_j(\sum_i a_{ij}x_i)y_j=(x^TA)y$, and both are $E(x,y)=x^TAy$. Finally, for two vectors $a,b,a\leq b$ means the inequality holds componentwise.

The goal of the mixed game for the players is to find (\bar{x}, \bar{y}) such that

$$E(\bar{x}, \bar{y}) = \max_{x} E(x, \bar{y})$$
 and $E(\bar{x}, \bar{y}) = \min_{y} E(\bar{x}, y)$

A solution (\bar{x}, \bar{y}) to this problem is called an *optimal game solution* or an optimal solution or a game solution for short, and $E(\bar{x}, \bar{y})$ is called the *game value*.

Definition 1. (\bar{x}, \bar{y}) is an Nash equilibrium point if for all probability mixed strategy vectors x, y,

$$E(x, \bar{y}) \le E(\bar{x}, \bar{y}) \le E(\bar{x}, y).$$

Proposition 1. Any optimal game solution is an Nash equilibrium point and vise versa.

Proof. $E(\bar{x}, \bar{y}) = \max_x E(x, \bar{y}) \ge E(x, \bar{y})$ for any x and $E(\bar{x}, \bar{y}) = \min_y E(\bar{x}, y) \le E(\bar{x}, y)$ for any y, showing (\bar{x}, \bar{y}) is an NE by definition. Conversely, let (\bar{x}, \bar{y}) be an NE, then $E(x, \bar{y}) \le E(\bar{x}, \bar{y}) \le E(\bar{x}, y)$, implying $\max_x E(x, \bar{y}) = E(\bar{x}, \bar{y}) = \min_y E(\bar{x}, y)$. The equalities hold because \bar{x} and \bar{y} are in the sets over which the optimizations are taken. \Box

Proposition 2. The game value is unique.

Proof. Let $(\bar{x}, \bar{y}), (x', y')$ be two optimal solutions with game values $u = E(\bar{x}, \bar{y}), v = E(x', y')$, respectively. Then by definition, $u = E(\bar{x}, \bar{y}) \le E(\bar{x}, y') \le E(x', y') = v$ because (\bar{x}, \bar{y}) is an NE for the first inequality and (x', y') is an NE for the second inequality. Since u, v are two arbitrary NEs, we have by the same argument $v \le u$, showing u = v.

Lemma 1. Let S be the simplex defined by $w_i \ge 0$ for all i and $\sum w_i = 1$, then $\max_{w \in S} c^T w = \max_{1 \le i \le k} \{c_i\}$. Similarly, $\min_{w \in S} c^T w = \min_{1 \le i \le k} \{c_i\}$.

Proof. Consider it as an LP problem to optimize $z = c^T w$ sub.t. $\sum w_i = 1$, $w_i \geq 0$. The optimal values take place at the corners point of the simplex. The corner points are e_i whose entries are all zeros except for the *i*th entry which is 1, and the value of the objective function at these corner points are exactly c_i . Hence, $\max c^T w = \max_i \{c_i\}$ and $\min c^T w = \min_i \{c_i\}$ respectively.

Proposition 3. The dual LP problem for the LP problem of $\max w = v$ sub.t. $x^TA \ge v\mathbf{1}^T, x \ge 0, \sum_i x_i = 1$ is $\min z = u$ sub.t. $Ay \le u\mathbf{1}, y \ge 0, \sum_j y_j = 1$. Therefore, the optimal value is the same and the solution of one problem is part of the shadow price of the other.

Theorem 1. (\bar{x}, \bar{y}) is an optimal game solution with the game value $\bar{v} = E(\bar{x}, \bar{y})$ iff (\bar{x}, \bar{v}) is a solution to this LP problem: $\max z = u$ sub.t. (subject to) $x^T A \ge u \mathbf{1}^T, x \ge 0, \sum x_i = 1$, and (\bar{y}, \bar{v}) is a solution to the dual LP problem: $\min z = u$ sub.t. $Ay \le u \mathbf{1}, y \ge 0, \sum y_i = 1$.

Proof. Proof of the necessity condition: As an optimal game solution $\bar{v}=E(\bar{x},\bar{y})=\min_y E(\bar{x},y)=\min_y (\bar{x}^TA)y=\min_j \{\bar{x}^TA_j\}$ by Lemma 1, which implies $\bar{x}^TA_j\geq \bar{v}$ for all j and equivalently $\bar{x}^TA\geq \bar{v}\mathbf{1}^T$. That is, \bar{x},\bar{v} is a basic feasible point for the LP problem $\max z=u$ sub.t. $x^TA\geq u\mathbf{1}^T$ with $x\geq 0, \sum x_i=1$.

We claim \bar{x}, \bar{v} must be an optimal solution to the LP problem. If not, there is an x' and u such that $x'^TA \geq u\mathbf{1}^T$ with $u > \bar{v} = E(\bar{x}, \bar{y})$. That is $\min_j \{x'^TA_j\} \geq u > \bar{v}$ componentwise. By Lemma 1, we have $\min_y E(x', y) = \min_y (x'^TA)y = \min_j \{x'^TA_j\} \geq u > \bar{v} = E(\bar{x}, \bar{y})$. Since $E(x', \bar{y}) \geq \min_y E(x', y) \geq u > \bar{v} = E(\bar{x}, \bar{y})$, this contradicts the property that (\bar{x}, \bar{y}) is an NE. This proves the necessary condition.

Conversely, because \bar{x}, \bar{y} are the optimal solutions for the dual pair with the optimal value \bar{v} , from $\bar{x}^TA \geq \bar{v}\mathbf{1}^T$ we have $E(\bar{x},\bar{y}) = (\bar{x}^TA)\bar{y} \geq (\bar{v}\mathbf{1}^T)y = \bar{v}$ and from $A\bar{y} \leq \bar{v}\mathbf{1}$ we have $E(\bar{x},\bar{y}) = \bar{x}^T(A\bar{y}) \leq x^T(\bar{v}\mathbf{1}) = \bar{v}$ and hence $E(\bar{x},\bar{y}) = \bar{v}$. Also, for any x, $E(x,\bar{y}) = x^T(A\bar{y}) \leq \bar{v} = E(\bar{x},\bar{y})$ and for any y, $E(\bar{x},y) = (\bar{x}^TA)y \geq \bar{v} = E(\bar{x},\bar{y})$, showing (\bar{x},\bar{y}) is an optimal game solution with the game value \bar{v} .

Theorem 2. Let (\bar{x}, \bar{y}) be an NE, then $E(\bar{x}, \bar{y}) = \max_x [\min_y E(x, y)]$ over the mixed strategy probability vectors and symmetrically $E(\bar{x}, \bar{y}) = \min_y [\max_x E(x, y)]$.

Proof. Notice that the primal LP problem can be equivalently written as $x^TA \ge u\mathbf{1}^T \Leftrightarrow \min_j x^TA_j \ge u \Leftrightarrow \min_y (x^TA)y \ge u \Leftrightarrow \min_y E(x,y) \ge u$ with the largest such u. This implies $\max_x (\min_y E(x,y)) \ge \max_x u = \bar{v} = E(\bar{x},\bar{y})$.

We claim the equality $\max_x (\min_y E(x,y)) = \max_x u$ must hold. If not, let $w(x) = \min_y E(x,y) = \min_j \{x^T A_j\} \Leftrightarrow x^T A_j \geq w(x)$ for all j and let x' have the property that $u' = w(x') = \max_x w(x)$ but $u' > \max_x u = \bar{v}$. Then $x^T A \geq w(x) \mathbf{1}^T$ for all x. In particular, $x'^T A \geq w(x') \mathbf{1}^T = u' \mathbf{1}^T$, showing (x', u') is a basic feasible point to the LP problem. Since \bar{v} is the maximal value of the LP solution, we must have $u' \leq \bar{v}$, contradicting the assumption $u' > \bar{v}$. Exactly the same argument applies to the dual problem.