MATH 428/828 Notes on Nash Equilibrium Point (M428 students not responsible to text in blue)

For this notes, z = [71,...,2Zm]T,y = [y1,...,yn]T are mixed strategy probability (column) vectors with z; > 0
forall 4, y; > O forall j, and >, x; = 1,2]. y; = 1, with vT' for the transpose of vector v. Also, 1 = [1,...,1]%,
the vector of all entries equal to 1 for an appropriate dimension depending on context. Thus, >, z; = 271 = 17z, Let
A = Ay xn = [ai;] be the payoff matrix for Player X against Player Y in a zero-sum game, A; be the column vectors of
the matrix A and a; be the row vectors of A,i.e. A = [Ay, Aa, ..., A,]and AT = [aT ... aL]. Then, the expected payoff

per play for Player X is E(z,y) = >, ; @iz xiy; which can be summed in two different orders, each in a dot product form:
B(z,y) = X3, aijy;) = «" (Ay) and B(z,y) = >2,(3; aijzi)y; = (¢" A)y, and both are E(z,y) = z" Ay.
Finally, for two vectors a, b, a < b means the inequality holds componentwise.

The goal of the mixed game for the players is to find (Z, ) such that

E(z,y) = max E(z,y) and E(Z,y) = min E(Z,y)
T Y

A solution (&, §) to this problem is called an optimal game solution or an optimal solution or a game solution for short, and
E(z,y) is called the game value.

Definition 1. (Z,y) is an Nash equilibrium point if for all probability mixed strategy vectors x, vy,
E(z,y) < E(z,y) < E(Z,y).
Proposition 1. Any optimal game solution is an Nash equilibrium point and vise versa.

Proof. E(z,y) = max, E(x,y) > E(x,g) for any z and E(Z,y) = min, E(Z,y) < E(z,y) for any y, showing (Z, §)
is an NE by definition. Conversely, let (Z,%) be an NE, then E(z,§) < E(Z,y) < E(Z,y), implying max, E(x,§) =
E(Z,y) = min, E(Z,y). The equalities hold because T and § are in the sets over which the optimizations are taken.  [J

Proposition 2. The game value is unique.

Proof. Let (Z,7), (¢',y’) be two optimal solutions with game values u = E(Z,7),v = E(’,y'), respectively. Then by
definition, v = E(Z,y) < E(Z,y') < E(2',y") = v because (Z, g) is an NE for the first inequality and (z’,y’) is an NE
for the second inequality. Since u, v are two arbitrary NEs, we have by the same argument v < u, showing u = v. O

Lemma 1. Let S be the simplex defined by w; > 0 forall i and Y, w; = 1, then maxyes ¢l w = maxy<;<x{c;}. Similarly,
minges ¢l w = miny<;<x{c; }-

Proof. Consider it as an LP problem to optimize z = c¢Tw sub.t. > w; = 1, w; > 0. The optimal values take place
at the corners point of the simplex. The corner points are e; whose entries are all zeros except for the ¢th entry which
is 1, and the value of the objective function at these corner points are exactly c;. Hence, max cTw = max;{c;} and

min ¢’ w = min; {c; } respectively. O

Proposition 3. The dual LP problem for the LP problem of maxw = v sub.t. x7 A > v17 2 > 0, Y,ri=1lisminz=u
sub.t. Ay < ul,y >0, Zj y; = L. Therefore, the optimal value is the same and the solution of one problem is part of the
shadow price of the other.

Theorem 1. (%, %) is an optimal game solution with the game value v = E(Z, %) iff (T, ) is a solution to this LP problem:
max z = u sub.t. (subject to) T A > ulT x> 0,3 x; = 1, and (y,) is a solution to the dual LP problem: min z = u
subtt. Ay <ul,y>0,> y; =1

Proof. Proof of the necessity condition: As an optimal game solution ¥ = E(Z, ) = min, E(Z,y) = min, (27 A)y =
min;{#7 A;} by Lemma 1, which implies 7 A; > © for all j and equivalently 27 A > ¥17. Thatis, Z, ¥ is a basic feasible
point for the LP problem max z = u sub.t. 2T A > ulT with z > 0,> x;=1.

We claim Z, 7 must be an optimal solution to the LP problem. If not, there is an 2’ and u such that 2TA > ulT
with u > o = E(Z,y). That is min;{2’"A;} > u > © componentwise. By Lemma 1, we have min, F(z',y) =
min, (2’7 A)y = min;{z'TA;} > v > v = E(Z,9). Since E(z',j) > min, E(z',y) > u > v = E(Z,%), this
contradicts the property that (&, 3) is an NE. This proves the necessary condition.

Conversely, because Z, 7 are the optimal solutions for the dual pair with the optimal value v, from z7 A > 1
E(z,9) = (2T A)y > (v17)y = v(1Ty) = v and from Ay < 91 we have E(z,9) = 27 (Ay) < 27 (v1) =
E(z,y) = v. Also, for any z, E(z,j) = 27 (Ay) < v = E(Z,7) and for any y, E(z,y) = (2T A)y > v = E(%,7),
showing (Z, ) is an optimal game solution with the game value . O

Theorem 2. Let (Z,y) be an NE, then E(Z,y) = max,|[min, E(z,y)| over the mixed strategy probability vectors and
symmetrically E(Z,y) = min,[max, E(z,y)].

Proof. Notice that the primal LP problem can be equivalently written as 7 A > u17 < min; 27 A; > u < min, (27 A)y >
u < min, E(z,y) > u with the largest such . This implies max, (min, £(z,y)) > max, u =7 = E(Z, ).

We claim the equality max,, (min, E(x,y)) = max, u must hold. If not, let w(z) = min, E(z,y) = min; {27 4;} <
T A; > w(x) for all j and let 2" have the property that v’ = w(z’) = max, w(z) but v’ > max,u = v. Then
2T A > w(z)17 for all . In particular, 2’7 A > w(z')1T = w17, showing (2/,u’) is a basic feasible point to the LP
problem. Since v is the maximal value of the LP solution, we must have v’ < o, contradicting the assumption u’ > @.
Exactly the same argument applies to the dual problem. O



