
MATH 428/828 Notes on Dynamic Programming (M428 students not responsible to text in blue)

Dynamic Programming is about optimization on multi-staged (multi-layered) directed graphs. Let k = 1, . . . , n denote
the kth stage (layer) of the graph, and sk ∈ Vk denote the state (node/vertex) variable from the set, Vk, of the beginning
states (nodes/vertices) of stage k, and similarly, sk+1 ∈ Vk+1 denote the state (node/vertex) variable from the set, Vk+1, of
the destination states (nodes/vertices) of stage k. Thus, by definition, Vk+1 is the set of beginning states for the (k + 1)th
stage, and so on. All state/node/vertex sets, Vk, contain no more than M many elements each. Let p(k)sksk+1 denote the
payoff or penalty from state sk to state sk+1 that is represented as a weight over the directed edge/path from sk to sk+1.
The superscript, (k), is necessary for stage k because it is often the case that the states of a node set Vi are coded by natural
numbers shared by other node sets Vj . (The node set Vk and Vk+1 together with the directed edges between them with
nonzero weights p(k)sksk+1 make up a so-called directed bipartite graph.) An objective function is a function of directed paths
of the graph whose value is defined by the payoff or penalty weights/parameters p(k)ij . Let opt denote either min or max
operation on the objective function. The goal for such a dynamic programming problem is to determine a path from V1 to
Vn+1 such that the objective function value along the path is optimal and the corresponding path is therefore the optimal
solution to the problem. For this notes we will assume the objective function is a summation of the edge weight p(k)ij along
(directed) paths from V1 to Vn+1, but the method can be adapted to other objective functional forms, such as products of
the weights which may represent some kind of likelihood in probability distributions, etc. Many practical problems can be
modeled by such multi-layered directed graphs even though there are no literal paths or stages in them.

Backward Iterative Method. Define

fn(sn, sn+1) = p(n)snsn+1
for sn ∈ Vn and sn+1 ∈ Vn+1.

For each sn ∈ Vn, find
f∗n(sn) = optsn+1∈Vn+1

fn(sn, sn+1).

This can be done since Vn+1 is a finite set. (For most cases, the last state set, Vn+1 is a singleton.)
For 1 ≤ k ≤ n− 1, suppose f∗k+1(sk+1) is found, which is the case for k = n− 1. Define

fk(sk, sk+1) = p(k)sksk+1
+ f∗k+1(sk+1)

which is the suboptimal objective value from state sk ∈ Vk to sk+1 ∈ Vk+1 and then onwards to Vn+1. Then, the kth stage
optimal value from state sk is defined inductively as

f∗k (sk) = optsk+1∈Vk+1
fk(sk, sk+1) = optsk+1∈Vk+1

[p(k)sksk+1
+ f∗k+1(sk+1)] = fk(sk, s

∗
k+1) for some s∗k+1 ∈ Vk+1

which must exist since Vk+1 is a finite set. That is, this is an optimization over all possible destination states of Vk+1 for
the suboptimal function fk.

Finally, for k = 1, the optimal solution is found so that for s∗1 ∈ V1, which is a singleton set for many cases,

f∗1 (s
∗
1) = opts1∈V1

f∗1 (s1).

Now, starting from s∗1 we can find the corresponding s∗2 from f∗1 (s
∗
1) = f1(s

∗
1, s
∗
2). From s∗2 we can find s∗3 from

f∗2 (s
∗
2) = f2(s

∗
2, s
∗
3), and so on and so forth, until we find the last state s∗n+1. That is, s∗ = s∗1 → s∗2 → · · · → s∗n → s∗n+1

is the optimal path, with the optimal value f∗1 (s
∗
1).

In terms of a programming pseudo code, we have the following
********************************************************************
Define fn(sn, sn+1) = p

(n)
snsn+1 for sn ∈ Vn and sn+1 ∈ Vn+1.

For each sn ∈ Vn, find f∗n(sn) = optsn+1∈Vn+1
fn(sn, sn+1).

For k = n− 1 to 1
For each sk ∈ Vk

For each sk+1 ∈ Vk+1

Find fk(sk, sk+1) = p
(k)
sksk+1 + f∗k+1(sk+1)

End
Find s∗k+1 and f∗k (sk) = optsk+1∈Vk+1

fk(sk, sk+1) = fk(sk, s
∗
k+1)

End
End
Find s∗1 ∈ V1 so that f∗1 (s

∗
1) = opts1∈V1

f∗1 (s1).
Output the optimal path (s∗1, s

∗
2, . . . , s

∗
n, s
∗
n+1) and the optimal value f∗1 (s

∗
1).

********************************************************************
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Forward Iterative Method. The method has its symmetrical version in forward iteration. A programming pseudo code
looks like this.

********************************************************************
Define g1(s1, s2) = p

(1)
s1s2 for s1 ∈ V1 and s2 ∈ V2.

For each s2 ∈ V2, find g∗1(s2) = opts1∈V1
g1(s1, s2). (For most cases, the initial set of state, V1 is a singleton.)

For k = 2 to n
For each sk+1 ∈ Vk+1

For each sk ∈ Vk

Find gk(sk, sk+1) = g∗k−1(sk) + p
(k)
sksk+1

End
Find s∗k and g∗k(sk+1) = optsk∈Vk

gk(sk, sk+1) = gk(s
∗
k, sk+1)

End
End
Find s∗n+1 ∈ Vn+1 so that g∗n(s

∗
n+1) = optsn+1∈Vn+1

gn(sn+1).
Output the optimal path (s∗1, s

∗
2, . . . , s

∗
n, s
∗
n+1) and the optimal value g∗n(s

∗
n+1).

********************************************************************


