MATH 428/828 Notes on Dynamic Programming (M428 students not responsible to text in blue)

Dynamic Programming is about optimization on multi-staged (multi-layered) directed graphs. Let k = 1, ..., n denote
the kth stage (layer) of the graph, and s € Vj denote the state (node/vertex) variable from the set, Vj, of the beginning
states (nodes/vertices) of stage k, and similarly, sx41 € Vi1 denote the state (node/vertex) variable from the set, Vj 1, of
the destination states (nodes/vertices) of stage k. Thus, by definition, Vj1 is the set of beginning states for the (k + 1)th
stage, and so on. All state/node/vertex sets, Vi, contain no more than M many elements each. Let pgflk 41 denote the
payoff or penalty from state s to state s;; that is represented as a weight over the directed edge/path from sy to Sy 1.
The superscript, (k), is necessary for stage k because it is often the case that the states of a node set V; are coded by natural
numbers shared by other node sets V;. (The node set V}, and V},; together with the directed edges between them with
nonzero weights pé’,fl «+1 make up a so-called directed bipartite graph.) An objective function is a function of directed paths
of the graph whose value is defined by the payoff or penalty weights/parameters pgf). Let opt denote either min or max
operation on the objective function. The goal for such a dynamic programming problem is to determine a path from V; to
V41 such that the objective function value along the path is optimal and the corresponding path is therefore the optimal
solution to the problem. For this notes we will assume the objective function is a summation of the edge weight pgf) along
(directed) paths from V; to V41, but the method can be adapted to other objective functional forms, such as products of
the weights which may represent some kind of likelihood in probability distributions, etc. Many practical problems can be
modeled by such multi-layered directed graphs even though there are no literal paths or stages in them.

Backward Iterative Method. Define

fr(Sny Snt1) = nglnH for s, € V,, and 5,41 € V,,41.

For each s,, € V,,, find
f:; (Sn) = Optsn“ EVnt1 fn(sm Sn-‘rl)'
This can be done since V,, 1 is a finite set. (For most cases, the last state set, V,, 1 is a singleton.)
For1 < k <mn — 1, suppose f1:+1(3k+1) is found, which is the case for k = n — 1. Define
k
fr(sks Skt1) = ng)sw + frr1(Skt1)

which is the suboptimal objective value from state s € Vi to sg41 € Vi1 and then onwards to V,, 1. Then, the kth stage
optimal value from state sj, is defined inductively as

Fr(se) = oDty evie o r(Sk skr1) = opty, v, [P+ Fia (k1)) = fr(sk, sipy) for some sf, € Vi

which must exist since Vj 1 is a finite set. That is, this is an optimization over all possible destination states of V4 for
the suboptimal function fj.
Finally, for k£ = 1, the optimal solution is found so that for s7 € V3, which is a singleton set for many cases,

f1(81) = opty, ev, f1 (s1)-

Now, starting from s} we can find the corresponding s5 from f;(s}) = fi(s},s5). From s} we can find s3 from
f5(s3) = f2(s3, s3), and so on and so forth, until we find the last state s , ;. Thatis, s* = s7 — s5 = -+ — s —= 57
is the optimal path, with the optimal value f;(s7).

In terms of a programming pseudo code, we have the following

S she sk sk sk sk sk sk sk sk st sk sk sk sk ste ste st ste st sfe sfe s sfe s s she sfe sk sk sk sk sk sk sk sk sk sk st sk sk sk sk st st ste st ste ste sfe st sk sfe sfe s sfe sk sk sk sk sk sk skoskokokok
(n)

Define fr,(Sn, Spt1) = Psyspir fOr s, € Vi and s,,41 € Vg
* —

For each s, € V,,, find f};(sn) = opty . cv, ., fn(Sns Snt1).

Fork=n—1to1

For each s, € V},

For each si 1 € Viy1

. k *
Find fk(Sk, 5k+1) = pgk)SIH—l + fk+1(5k+1)

End
Find sj ) and f;/(sk) = obts, , cvy., fr(Sk, Ske+1) = fr(sks 541)
End
End
Find s7 € V so that f{(s]) = opt,, v, f1(51)-
Output the optimal path (s7, s3, ..., s}, 55, ;) and the optimal value f{(s}).

sk sfe st ke she sfe st s sk she st sfesie sk she st sieske sk sk ste e she sk sie sieske she sk stesieske sk sk stk ske sk st stesie sk sk st sk sk st siesteosk sk ikt skoiokokokokoiokoskokoskor



Forward Iterative Method. The method has its symmetrical version in forward iteration. A programming pseudo code
looks like this.
Sk sfe skt sie skeosie st sk skeoske sie skeosie sie skeosie sk skeosieosie sk sk sie st sie skeoske sk sk sieosie sk skt sk skeosieosie skeoskeosie sie st sk skt st skt skt sioskotokoskolkor skokor
Define g1 (s1, s2) = pg)SZ for s; € V7 and s5 € V5.
For each s, € V5, find gf(s2) = opt,, ¢y, 91(51, 52). (For most cases, the initial set of state, V is a singleton.)
Fork=2ton
For each s;+1 € Vi1
For each s, € V},
. k
Find gi (sk, 5x41) = g5y (5k) + Do
End
Find s} and g (sk+1) = opty, cv, 9k (Sk, Sk+1) = gr(S), Skr1)
End
End
Find s}, € Viipq sothat g7 (s], 1) = opt, . cv,,,, In(Snt1)-

M * * * * M * *
Output the optimal path (s7, s3, ..., sy, sy ;) and the optimal value g (s;, , ).
sk sk sk ske sk sk sk st st sk stk kst sk st st sk sk sk sk sk sk sk sk skoskeoske sk sk sk sk skoskoskostotoskostotokokokokokokokokokoskokokoskokokokokokokokokokokokololkok



