
Solution Key to Selected Exercises of MATH 423/823

Sec.1.2.
14. Prove that |z1z2| = |z1||z2|.

Proof: Since z2 = zz and z1z2 = z1 z2, then by the commutativity and associativity
of multiplication we have |z1z2|2 = (z1z2)(z1z2) = (z1z1)(z2z2) = |z1|2|z2|2, which
implies the identity.

Sec.1.3.
16. Prove that ||z1| − |z2|| ≤ |z1 − z2|.

Proof: Let z = z1 − z2 and w = z2. Since z + w = z1, we have by the triangle
inequality that |z1| = |z+w| ≤ |z|+|w| = |z1−z2|+|z2|. Hence, |z1|−|z2| ≤ |z1−z2|.
Exchanging the roles of z1 and z2, we have −(|z1| − |z2|) = |z2| − |z1| ≤ |z2 − z1| =
| − (z1 − z2)| = |z1 − z2|, equivalently, −|z1 − z2| ≤ |z1| − |z2|. Together, the
inequalities −|z1 − z2| ≤ |z1| − |z2| and |z1| − |z2| ≤ |z1 − z2| is equivalent to
||z1| − |z2|| ≤ |z1 − z2|. The end of proof.

Sec.1.6.
10. Prove that the closed disk |z − z0| ≤ ρ is bounded.

Proof: For every z satisfying |z − z0| ≤ ρ we have ||z| − |z0|| ≤ |z − z0| ≤ ρ which
is −ρ ≤ |z| − |z0| ≤ ρ. The second inequality becomes |z| ≤ |z0|+ ρ := N , showing
that z is bounded by N .

13. Let S be a subset of C. Prove that S is closed if and only if its complement
Sc := C \ S is open.
Proof: Denote by ∂D the boundary of a set D. It is straightforward to show by defini-
tion that ∂S = ∂Sc because ∀z ∈ ∂S and ∀ε > 0, Dε(z)∩S 6= ∅ and Dε(z)∩Sc 6= ∅
which by definition is equivalent to z ∈ Sc. To show Sc is closed if S is open we only
need to show ∀z ∈ ∂Sc ⇒ z ∈ Sc. This is true because if z ∈ S then ∃Dρ(z) ⊂ S
for some ρ > 0 since S is open, an contradiction. To show S is open if Sc is closed
we only need to show for each z ∈ S there is a ρ so that Dρ(z) ⊂ S. This is true
because z 6∈ Sc ⇒ z 6∈ ∂Sc = ∂S ⇒ z 6∈ ∂S ⇒ there must be one ρ > 0 so that
Dρ(z) ⊂ S. Otherwise, we would have for all small ε > 0 there must be at least one
point in Dε(z) ∩ Sc, a contradiction.

Sec.1.7.
8. Second part: give a geometric explanation of χ(z, w) = χ(1/z, 1/w).

Outline of Explanation: Let R2 be the reflection operation with respect to the x1x3-
plane in R3, R2(Z) = R2(x1, x2, x3) = (x1,−x2, x3) and similarly R3 be the re-
flection operation with respect to the x1x2-plane with R3(Z) = R3(x1, x2, x3) =
(x1, x2,−x3). Let Z = P (z) denote the stereographic projection. We note first that
both R2 and R3 preserve the Euclidean distance: d(Z,W ) = d(Ri(Z), Ri(W )).
We note second that the x1x3-reflection reserves the stereographic projection, i.e.
R2(P (z)) = P (R2(z)), because R2 transforms z, Z = P (z) and its defining line
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through the north pole to the corresponding reflections. We should also note that
the two reflection operations map points from the unit sphere to points on the unit
sphere. Let Z = P (z), Z ′ = R2(Z), Z ′′ = R3(Z ′) and similar notations for w. We
know d(Z,W ) = d(Z ′,W ′) = d(Z ′′,W ′′). It only remains to show this claim that
P ( 1

z ) = Z ′′ = R3(R2(P (z))), which implies χ(z, w) = d(Z,W ) = d(Z ′′,W ′′) =
χ(1/z, 1/w). Use the polar coordinate form z = reiθ to get 1/z = 1

r e
−θ, a point

on the radial plane with the phase angle −θ in R3. The reflected point z′ = R2(z)
and Z ′ = R2(Z) lie on the same radial plane as well. The claim is proved by us-
ing Euclidean geometry as depicted in the diagram below. It is a cross-section view
on the radial plan Argz = −θ for the case of r ≥ 1. From which we see the fol-
lowing: ∆NOD ∼ ∆NSZ ′′ because they are right triangles and share a common
angle. Also ∆NSZ ′′ ∼ ∆NOr because they are right triangles and because the
angle ∠NSZ ′′ = ∠SNr as they are from the isosceles triangle ∆NSr. Therefore
∆NOD ∼ ∆NOr which implies D/1 = 1/r by similarity. Thus P (1/z) = Z ′′. For
the case of r < 1, the same diagram works after exchanging r with 1/r and Z ′ with
Z ′′. This completes the outline.
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Sec.2.2.
Theorem 1(ii): If limz→z0 f(z) = A, limz→z0 g(z) = B, then limz→z0 f(z)g(z) =

AB.
Proof: We first show that If limz→z0 f(z) = A then f is bounded by a constant M in
a disk Dρ(z0) for some ρ > 0. In fact, by definition for ε = 1 there is a ρ > 0 so that
|z−z0| < ρ⇒ |f(z)−A| < ε = 1 which implies ||f(z)|−|A|| ≤ |f(z)−A| < 1 and
|f(z)| < |A|+1 := M follows. Thus, without loss of generality (wlog), we can assume
|f(z)|, |g(z)| ≤ N for z ∈ Dr(z0) for some number N > max |A|+ 1, |B|+ 1 and
r > 0.

We first use the assumption to have ∀ε > 0 ∃ δ1 > 0 and δ2 > 0 with δ1,2 <
r s.t.(such that) |z − z0| < δ1 ⇒ |f(z) − A| < ε/(2N) and |z − z0| < δ2 ⇒
|g(z) − B| < ε/(2N). Now let δ = min{δ1, δ2} then ∀|z − z0| < δ ≤ δ1, δ2 both
|f(z)−A| < ε/(2N) and |g(z)−B| < ε/(2N).

Now for the product rule, we have ∀z with |z − z0| < δ

|f(z)g(z)−AB| = |f(z)g(z)−Ag(z)+Ag(z)−AB| ≤ |f(z)−A||g(z)|+|A||g(z)−B|

≤ N(|f(z)−A|+ |g(z)−B|) < N [ε/(2N) + ε/(2N)] = ε.

This proves the result.
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22. Show that if limn→∞ f(zn) = w0 for every sequence {zn}∞1 converging to z0

(zn 6= z0), then limz→z0 f(x) = w0.
Proof: Suppose on the contrary that limz→z0 f(x) 6= w0. Then by definition there
must be a number ε0 > so that for every δ > 0 the inequality |f(z) − w0| < ε0 does
not hold for every point |z − z0| < δ. That is there is some point zδ with |zδ − z0| < δ
but |f(zδ)−w0| ≥ ε0. In particular, for each integer nwe can find a point zn satisfying
|zn − z0| < 1/n but |f(zn) − w0| ≥ ε0. This contradicts the assumption because by
construction this sequence zn → z0 but limn→∞ f(zn) 6= w0.

Sec.2.4.
Prove the product rule of derivative: [f(z)g(z)]′ = f ′(z)g(z) + f(z)g′(z)

Proof: We will use the fact that a function is differentiable at a point is also continuous
at the point. By definition, and a standard trick of adding and subtracting a same term,
f(z)g(z + ∆z), in the numerator below, we have

[f(z)g(z)]′ = lim
∆z→0

f(z + ∆z)g(z + ∆z)− f(z)g(z)

∆z

= lim
∆z→0

f(z + ∆z)g(z + ∆z)− f(z)g(z + ∆z) + f(z)g(z + ∆z)− f(z)g(z)

∆z

= lim
∆z→0

[
f(z + ∆z)− f(z)

∆z
g(z + ∆z) + f(z)

g(z + ∆z)− g(z)

∆z

]
= lim

∆z→0

f(z + ∆z)− f(z)

∆z
lim

∆z→0
g(z + ∆z) + f(z) lim

∆z→0

g(z + ∆z)− g(z)

∆z

= f ′(z)g(z) + f(z)g′(z).

The last equality follows from the assumption and the fact that all the limits involved
exist, as well as the production and summation rules of limit. This proves the result.

11 Suppose that f(z) and f(z) are analytic in a domain. Show that f(z) is constant
in D.
Proof: Let f(z) = u(x, y) + iv(x, y) and g(z) = f(z) + f(z) = 2u(x, y). Then by
the summation rule, g is also analytic in D. Since Img(z) = 0, by the C-R equations
we have ux = uy = 0 and hence u(x, y) is constant, which in turn implies v(x, y) is
constant, and hence the proof.

Sec.3.3.
Lecture example: Find the domain of the function w = z2 whose range is the plane

with the branch cut L = {Rew = 1, Imw ∈ [0,+∞)}.
Solution: The branch cut L has two sides. On the left side w ∈ L−, we have argw =
Argw ∈ [0, π/2). On the right side w ∈ L+, we have argw = Argw + 2π ∈
[2π, 2π + π/2). To find the preimage of L± is to find the image of the inverse map
z = w1/2 = |w|1/2ei(argw)/2 = |w|1/2ei(Argw/2+kπ). Let w = u + iv and Argw =

θ. Then for w ∈ L− with k = 0, |w| =
√

1 + v2, and cos(θ/2) =
√

1+cos(θ)
2 ,

sin(θ/2) =
√

1−cos(θ)
2 by the half-angle formula. As tan θ = v/u = v, we have

cos(θ) = 1/
√

1 + v2 (and sin(θ) = v/
√

1 + v2). Therefore x + iy = z = w1/2 =
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(1 + v2)1/4[cos(θ/2) + i sin(θ/2)] = (1 + v2)1/4[
√√

1+v2+1
2
√

1+v2
+ i
√√

1+v2−1
2
√

1+v2
], which

is simplified to x = s(v) =

√√
1+v2+1

2 and y = t(v) =

√√
1+v2−1

2 parameterized
by parameter v ∈ [0,∞). This obtains L− corresponding side of a cut in the domain
D. For the L+ side of the cut in the range, since argw = Argw+ 2π, the image under
w1/2 differs from that of L− exactly by a negative sign, that is x = −s(v), y = −t(v).
See figure, in which the additional cut {0 ≤ u ≤ 1, v = 0} is needed for the definition
of the inverse function z = w1/2. Also the corresponding subregions in domain and
range are color coded.
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Sec.3.3.
10. Show that the function Log(−z) + iπ is a branch of log z in the domain D0

consisting of all points in the plane except those on the nonnegative real axis.
Solution: By definition, Log(−z) + iπ = log |z| + i(Arg(−z) + π). There are two
cases as Arg(z) ∈ (−π, π]. For z in the quadrant I or II, −z is in quadrant III or IV,
Arg(−z) = Arg(z) − π. For z in the quadrant III or IV, −z is in quadrant I or II,
Arg(−z) = Arg(z) + π. Therefore, Arg(−z) + π = Arg(z) = arg0(z) ∈ (0, π) if z
is in quadrant I or II, and Arg(−z) + π = Arg(z) + 2π = arg0(z) ∈ (π, 2π) if z in
the quadrant III or IV. Together, this shows Log(−z) + iπ = log0(z).


