Name: ______ Score: _____

Instructions: You must show supporting work to receive full and partial credits. No text book, notes, or formula sheets allowed.

- 1. (10 pts) True/False. For each of the following statements, please circle T (True) or F (False). You do not need to justify your answer.
 - (a) T or F? λ is an eigenvalue of A if and only if $\text{null}(A \lambda I)$ has a nonzero vector.
 - (b) T or F? If an invertible matrix A is similar to matrix B then $det(B) = det(A^{-1})$.
 - (c) T or F? If W is the null space of a matrix A then the orthogonal complement W^{\perp} is the row space of A.
 - (d) T or F? The dimension of the space of polynomials of degree n, \mathbb{P}_n is n.
 - (e) T or F? If $P_{\mathcal{C}\leftarrow\mathcal{B}}$ is a change-of-coordinate matrix, then 1 must be one of its eigenvalues.
 - (f) T or F? If $\mathbf{v_1}$ and $\mathbf{v_2}$ are orthogonal, then $A\mathbf{v_1}$ and $A\mathbf{v_2}$ must be orthogonal for any invertible matrix A.
 - (g) T or F? The rank of any $n \times n$ orthogonal matrix is always 0.
- 2. (10 pts) The following matrix A and B are row equivalent:

$$\begin{bmatrix} -2 & 4 & -2 & -4 \\ 2 & -6 & -3 & 1 \\ -3 & 8 & 2 & -3 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 6 & 5 \\ 0 & 2 & 5 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

- (a) Find a basis for the row space of A.
- (b) Find a basis for the row space of A that are row vectors of A. Justify your answer.

- 3. (15 pts) Let $\mathcal{B} = \{1 3t^2, 2 + t 5t^2, 1 + 2t\}$ be a basis of \mathbb{P}_2 and $\mathcal{C} = \{1, t, t^2\}$ be its standard basis.
 - (a) Find the change-of-coordinate matrix from \mathcal{B} to \mathcal{C} , $P_{\mathcal{C}\leftarrow\mathcal{B}}$.

(b) Write t^2 as a linear combination of the polynomials in $\mathcal B$ and the coordinate $[t^2]_{\mathcal B}$.

4. (5 pts) Let $\mathcal{B} = \{ \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \}$ be a basis of $\mathcal{M}_{2\times 2}$, and $[A]_{\mathcal{B}} = \begin{bmatrix} 0 \\ 1 \\ 2 \\ 3 \end{bmatrix}$. Find A.

5. (10 pts) Let
$$\mathbf{v} = \begin{bmatrix} 3 \\ 0 \\ 3 \\ 0 \end{bmatrix}$$
, $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \\ -1 \end{bmatrix}$. Find a vector $\mathbf{w} \in W = \text{span}\{\mathbf{v}_1\}$ and $\mathbf{w}^{\perp} \in W^{\perp}$ so that $\mathbf{v} = \mathbf{v} + \mathbf{v}^{\perp}$. Show work to justify your answer.

6. (15 pts) The eigenvalues of the matrix $A = \begin{bmatrix} 3 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 3 \end{bmatrix}$ are 2 and 5. Find an invertible matrix P and a diagonal matrix P so that $P^{-1}AP = D$, if possible.

- 7. (10 pts) (a) Find the characteristic equation for the matrix $A = \begin{bmatrix} 2 & 0 & -2 \\ 1 & 3 & 2 \\ 0 & 0 & 3 \end{bmatrix}$
 - (b) Find all eigenvalues of A.
- 8. (15 pts) (a) Verify that $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is an orthogonal basis for \mathbb{R}^3 with $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$.

(b) Find the coordinate $[\mathbf{v}]_{\mathcal{B}}$ of $\mathbf{v} = \begin{bmatrix} -1 \\ 5 \\ 1 \end{bmatrix}$.

(c) Find the distance between \mathbf{v} and \mathbf{v}_3 .

9.	(5 pts) Let $\mathbf{v}_1, \mathbf{v}_2$ be the eigenvectors of two distinct eigenvalues λ_1, λ_2 , respectively, for a symmetric matrix A . Prove that $\mathbf{v}_1, \mathbf{v}_2$ are perpendicular.
10.	(5 pts) Let A be an orthogonal matrix (i.e. $A^{-1} = A^{T}$). Prove that its row vectors form an orthonormal set.