Instructions: You must show supporting work to receive full and partial credits. No text book, notes, or formula sheets allowed.

1. (20 pts) True/False. For each of the following statements, please circle T (True) or F (False). You do not need to justify your answer.
(a) T or F ? If A is a 5×8 matrix then the nullity of A is at least 3 .
(b) T or F? The columns of any 3×4 matrix can be linearly independent.
(c) T or F? If W is a vector space spanned by 4 vectors, them the dimension of W is 4 .
(d) T or F ? If A and B are $n \times n$ matrices such $A B=0$ then $B A=0$.
(e) T or F? The elementary row operations preserve the eigenvalues of any matrix.
(f) T or F ? If A is an $m \times n$ with $m<n$, then the dimension of its row space is also less than the dimension of the column space.
(g) T or F? If there are infinitely many solutions to a nonhomogeneous equation $A \vec{x}=\vec{b}$, then the dimension of nullspace null (A) must be zero.
(h) T or F ? If A is an orthogonal matrix, then $\operatorname{det}(A)=1$.
(i) T or F ? $W=\left\{[x, y, z]^{T}: x+2 y+3 z=4\right\}$ is a linear subspace of \mathbb{R}^{3}.
(j) T or F ? Let $W=\operatorname{span}\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$ be a subspace of $\mathbb{R}^{n}, \vec{x}=x_{1} \vec{v}_{1}+\cdots+x_{k} \vec{v}_{k}$ and $\vec{y}=$ $y_{1} \vec{v}_{1}+\cdots+y_{k} \vec{v}_{k}$. Then $\vec{x} \cdot \vec{y}=x_{1} y_{1}+\cdots+x_{k} y_{k}$.
2. (10 pts) Find all real number k such that the determinant of the matrix $A=\left[\begin{array}{llll}1 & 4 & 3 & 1 \\ k & 1 & 0 & 3 \\ 1 & 2 & 3 & 1 \\ 3 & 5 & 0 & 1\end{array}\right]$ is not zero.
3. (30 pts) The following matrices are row equivalent

$$
A=\left[\begin{array}{ccccccc}
0 & 1 & -1 & 0 & 2 & 0 & -2 \\
0 & 2 & -2 & 1 & 5 & 0 & -3 \\
0 & 0 & 0 & 0 & 0 & 1 & 2 \\
0 & -1 & 1 & 0 & -2 & 0 & 2
\end{array}\right], \quad R=\left[\begin{array}{ccccccc}
0 & 1 & -1 & 0 & 2 & 0 & -2 \\
0 & 0 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

(a) Find the rank of A and the nullity of A.
(b) Find a basis, \mathcal{B}, for the column space of A.
(c) Is the vector $\mathbf{b}=\left[\begin{array}{c}1 \\ 1 \\ 2 \\ -1\end{array}\right]$ in the column space of A ? If yes, find the coordinate $[\mathbf{b}]_{\mathcal{B}}$.
(d) Find a basis for the nullspace of A.
(e) Find a basis for the subspace W that is orthogonal to the nullspace, $\operatorname{null}(A)$, of A.
4. (15 pts) (a) Find the inverse matrix A^{-1} of $A=\left[\begin{array}{ccc}-3 & -2 & -1 \\ 2 & 1 & 0 \\ 4 & 2 & 1\end{array}\right]$.
(b) Write A as a product of elementary matrices.
5. (15 pts) Let $W=\left\{\left[\begin{array}{l}w \\ x \\ y \\ z\end{array}\right]: w+x=0, x+y+z=0\right\}$.
(a) Verify that W is a linear subspace of \mathbb{R}^{4}.
(b) Find a basis for W^{\perp}.
6. (15 pts) Let T be a linear transformation in \mathbb{R}^{2} satisfying $T\left(\mathbf{e}_{1}\right)=2 \mathbf{e}_{1}+\mathbf{e}_{2}$ and $T\left(\mathbf{e}_{2}\right)=3 \mathbf{e}_{1}+4 \mathbf{e}_{2}$.
(a) Find its matrix of transformation $[T]$.
(b) Let S be another linear transformation with $[S]=\left[\begin{array}{ll}1 & 2 \\ 0 & 2\end{array}\right]$. Find $T \circ S\left(\left[\begin{array}{c}-1 \\ 1\end{array}\right]\right)$.
7. (15 pts) Let $A=\left[\begin{array}{ccc}2 & 0 & 0 \\ -2 & -2 & -3 \\ 2 & 4 & 5\end{array}\right]$.
(a) Verify that $\mathbf{v}=\left[\begin{array}{c}1 \\ -2 \\ 2\end{array}\right]$ is an eigenvector of A and determine corresponding eigenvalue λ.
(b) Find a basis for the eigenspace E_{λ} for the eigenvalue λ from (a).
8. (15 pts) Let $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}=\left\{\left[\begin{array}{l}3 \\ 2\end{array}\right],\left[\begin{array}{l}7 \\ 4\end{array}\right]\right\}$ and $\mathcal{C}=\left\{\mathbf{c}_{1}, \mathbf{c}_{2}\right\}=\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\}$ be two bases of \mathbb{R}^{2}.
(a) Find the change of basis matrix $P_{\mathcal{C} \leftarrow \mathcal{B}}$ from \mathcal{B} to \mathcal{C}
(b) If $\mathbf{v}=\mathbf{b}_{\mathbf{1}}+2 \mathbf{b}_{2}$, find both $[\mathbf{v}]_{\mathcal{B}}$ and $[\mathbf{v}]_{\mathcal{C}}$.
9. $(15 \mathrm{pts})$ Let $W=\operatorname{span}\left\{\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 2 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]\right\}$. Use the Gram-Schmidt process to find an orthogonal basis for W.
10. (15 pts) Let $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 0 & 0\end{array}\right]=\left[\begin{array}{l}1 \\ 0\end{array}\right]\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$. Find an outer product form of the singular value decomposition (SVD) for A.
11. (15 pts) For the bilinear form $f(\mathbf{x})=x_{1}^{2}+x_{2}^{2}+2 x_{1} x_{2}$, find an orthogonal change of variables $\mathbf{x}=Q \mathbf{y}$ with $Q^{T}=Q$ so that in the new variable $\mathbf{y}=\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right]$ the bilinear form becomes $f(\mathbf{x})=a y_{1}^{2}+b y_{2}^{2}$ for some real numbers a, b.
12. (10 pts) If a symmetric matrix A has eigenvalues $\lambda_{1}=0, \lambda_{2}=1$ with an eigenvector $\mathbf{v}_{1}=\left[\begin{array}{c}5 \\ 12\end{array}\right]$ for λ_{1}, find an orthogonal matrix Q and a diagonal matrix D so that $Q^{T} A Q=D$.
13. (5 pts) Let $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ be a basis of \mathbb{R}^{n}. Prove that for any two vectors \mathbf{x}, \mathbf{y} from \mathbb{R}^{n}, $[\mathbf{x}+\mathbf{y}]_{\mathcal{B}}=[\mathbf{x}]_{\mathcal{B}}+[\mathbf{y}]_{\mathcal{B}}$.
14. (5 pts) Let A be an $n \times n$ symmetric matrix, $A^{T}=A$, and let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ be the eigenvalues of A. Show that $\left|\lambda_{1}\right|,\left|\lambda_{2}\right|, \ldots,\left|\lambda_{n}\right|$ are the singular values of A.

2 Bonus Points: The number of times that homework are collected are (a) 16, (b) 18, (c) 20, (d) 22.

