Name: ______ Score: _____

Instructions: You must show supporting work to receive full and partial credits. No text book, notes, or formula sheets allowed.

- 1. (15 pts) True/False. For each of the following statements, please $circle\ T$ (True) or F (False). You do not need to justify your answer.
 - (a) T or F? The zero vector $\mathbf{0}$ is always an eigenvector of any matrix A.
 - (b) T or F? If an $n \times n$ invertible matrix A is similar to a matrix B then the column space of B spans \mathbb{R}^n .
 - (c) T or F? An invertible matrix A is always diagonalizable.
 - (d) T or F? If λ and μ are eigenvalues of A and B, respectively, then $\lambda + \mu$ is an eigenvalue of A + B.
- 2. (15 pts) Let $A = \begin{bmatrix} 1 & 0 & 2 \\ 1 & 2 & 1 \\ 7 & 8 & 10 \\ 1 & 2 & 2 \end{bmatrix}$. You are given the fact that the transpose A^T is row equivalent to $B = \begin{bmatrix} 1 & 0 & 3 & 0 \\ 0 & 1 & 4 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$.
 - (a) Find a basis for the row space of A that are row vectors of A. Justify your answer.

(b) Find a basis for the null space of the transpose A^T .

3.	(20 pts) Let $\mathcal{B} = \{1 - t, 1 - t + t^2, t - t^2\}$ be a basis of \mathbb{P}_2 and $\mathcal{C} = \{1, t, t^2\}$ be its standard basis.
	(a) Find the change-of-coordinate matrix from \mathcal{B} to \mathcal{C} , $P_{\mathcal{C}\leftarrow\mathcal{B}}$.
	(b) Use (a) to find the change-of-coordinate matrix from \mathcal{C} to \mathcal{B} , $P_{\mathcal{B}\leftarrow\mathcal{C}}$. (Use calculator to save time.)
	(c) Let $p = 1 + t + t^2$. Use (b) to find the coordinate of p with respect to \mathcal{B} , $[p]_{\mathcal{B}}$.
	(e) Let p 1 + e + e + e see (s) to that the contained of p with respect to 2, [p]p.
	(d) Use (c) to write p as a linear combination of the polynomials in \mathcal{B} .

- 4. (15 pts) Let $A = \begin{bmatrix} 1 & 2 & -1 & -2 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 2 & 2 & 0 & -1 \end{bmatrix}$.
 - (a) Find the characteristic equation for A.

- (b) Find all eigenvalues of A.
- (c) Verify that 1 is an eigenvalue, and find the eigenspace $E_{\lambda=1}$ of the eigenvalue 1.

5. (15 pts) The eigenvectors of matrix $A = \begin{bmatrix} 1 & 0 \\ 2 & 3 \end{bmatrix}$ are $\mathbf{v}_1 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$. Find P and D to diagonalize A as $A = PDP^{-1}$.

6. (20 pts) (a) Let $M = \{\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} : a_{ij} \text{ are arbitrary real numbers} \}$. Assume M is a vector space. Show that the set of matrices $H = \{\begin{bmatrix} a & 0 \\ b & c \end{bmatrix} : a, b, c \text{ are arbitrary real numbers} \}$ is a subspace of M.

(b) Show that this map T(A) = [1, 2]A with A from H is a linear transformation from H to the space of row vectors of \mathbb{R}^2 .

(c) What is the standard basis for H?