Name: ______ Score: _____

Instructions: You must show supporting work to receive full and partial credits. No text book, notes, or formula sheets allowed.

- 1. (15 pts) True/False. For each of the following statements, please $circle\ T$ (True) or F (False). You do not need to justify your answer.
 - (a) T or F? λ is an eigenvalue of A if and only if $\text{null}(A \lambda I)$ has a nonzero vector.
 - (b) T or F? An invertible matrix A is always diagonalizable.
 - (c) T or F? Zero is always an eigenvalue of non-invertible matrix.
 - (d) T or F? If the determinant of a matrix is 1 then the rank of the matrix is also 1.
 - (e) T or F? The zero subspace space $E = \{0\}$ can be the eigenspace of a matrix.
 - (f) T or F? An $n \times n$ matrix is diagonalizable if and only if it has n distinct eigenvalues.
- 2. (15 pts) Given the following similarity relation $P^{-1}AP = D$.

$$\begin{bmatrix} 0 & -1 & 0 & 1 \\ 1 & 1 & -1 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \underbrace{\begin{bmatrix} 1 & 2 & -1 & -2 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & -1 \end{bmatrix}}_{A} \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- (a) What are the eigenvalues of A and their multiplicities?
- (b) Find a basis for the eigenspace of the largest eigenvalue.

(c) Is $\mathbf{v} = \begin{bmatrix} 1 \\ 2 \\ 0 \\ 2 \end{bmatrix}$ an engenvector of A? Justify your answer.

- 3. (15 pts) Change-of-basis. Consider the bases $\mathcal{B} = \left\{ \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\}$ and $\mathcal{C} = \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\}$ for \mathbb{R}^2 .
 - (a) Verify that $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ is the coordinate $[\mathbf{x}]_{\mathcal{B}}$ in the basis \mathcal{B} for the vector $\mathbf{x} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$.

(b) Find the change-of-basis matrix $\mathcal{P}_{\mathcal{C}\leftarrow\mathcal{B}}$.

(c) Find the coordinate $[\mathbf{x}]_{\mathcal{C}}$ in the basis \mathcal{C} for \mathbf{x} .

4. (15 pts) Let $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} 2 \\ 0 \\ 1 \\ 1 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} 0 \\ 0 \\ -1 \\ 1 \end{bmatrix}$, $\mathbf{v}_4 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$. Find a basis consisting of vectors of the set for the space $\mathrm{Span}\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$. (Show work to justify.)

5. (15 pts) Diagonalize matrix $A = \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix}$, i.e., find a diagonal matrix D and an invertible matrix P and P^{-1} so that $A = PDP^{-1}$. (You must show work to receive credit.)

6. (15 pts) Let
$$A = \begin{bmatrix} -2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2 \end{bmatrix}$$
.

(a) Use a combination of row reduction, row and column expansion to find the characteristic equation of A. (No work no credit.)

(b) Is $\mathbf{v} = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$ an eigenvector of A? Justify your answer.

7. (10 pts) You are given the fact that $\lambda = -3$ is an eigenvalue of $A = \begin{bmatrix} -2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2 \end{bmatrix}$. Find a basis for its eigenspace E_{-3} .