Print Your Name Legibly:__

Score: _____

Instructions: You must show supporting work to receive full and partial credits. No text book, notes, or formula sheets allowed.

- 1. (20 pts) For each of the following statements, please $circle\ T$ (True) or F (False). You do not need to justify your answer.
 - (a) T or F? All elementary matrixes are invertible.
 - (b) T or F? Every orthogonal matrix is symmetric.
 - (c) T or F? If A is an $m \times n$ with m < n, then the dimension of its column space is greater than the dimension of its row space.
 - (d) T or F? The null space null(A) of a matrix A is orthogonal to the column space of A^T .
 - (e) T or F? The singular values of a matrix can be zeros.
- 2. (15 pts) Let $A = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}$. Use elementary row reduction to find the inverse A^{-1} . (You must show work to receive credit.)

3. (15 pts) Let $\mathcal{B} = \{1+t, 2t+t^2, 1-t^2\}$ be a basis of \mathbb{P}_2 and $\mathcal{C} = \{1, t, t^2\}$ be its standard basis. Find the change-of-coordinate matrix from \mathcal{B} to \mathcal{C} , $P_{\mathcal{C} \leftarrow \mathcal{B}}$.

- 4. (20 pts) Let $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 2 & 1 & 1 \end{bmatrix}$.
 - (a) Find the characteristic equation for A.

- (b) Find all eigenvalues of A
- 5. (20 pts) Use the Gram-Schmidt process to find an orthogonal basis for the subspace $W = \operatorname{Span}\{\begin{bmatrix}1\\0\\2\\-1\end{bmatrix},\begin{bmatrix}0\\1\\1\\2\end{bmatrix},\begin{bmatrix}1\\0\\1\\1\end{bmatrix}\}$.

- 6. (15 pts) Let $\mathbf{u} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix}$.
 - (a) Find the distance between \mathbf{u} and \mathbf{v} .
 - (b) Find the angle between \mathbf{u} and \mathbf{v} .

7. (20 pts) Let $W = \text{span}\left\{\begin{bmatrix}1\\1\\1\\0\end{bmatrix},\begin{bmatrix}1\\0\\1\\1\end{bmatrix}\right\}$. Find a basis for the orthogonal complement W^{\perp} of W.

- 8. (20 pts) For matrix $A = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 2 & 2 \\ -2 & 0 & 0 \end{bmatrix}$, you are given the fact that the eigenvalues are 0, 1, 2.
 - (a) Find all eigenspaces of the eigenvalues.

- (b) Can A be diagonalized? If yes, find the diagonalization.
- 9. (20 pts) For $A = \begin{bmatrix} 0 & 2 & 0 \\ 2 & 0 & 0 \\ 0 & 0 & 2 \end{bmatrix}$, you are given the fact that $\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ are the eigenvectors.
 - (a) What are the eigenvalues?

(b) Use the information given and (a) above, write a spectral decomposition for A.

10. (15 pts) The singular value decomposition of a 2×3 matrix is given as

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 5 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 4/5 & 3/5 & 0 \\ 0 & 0 & 1 \\ -3/5 & 4/5 & 0 \end{bmatrix}$$

- (a) What are the eigenvalues of the product $A^{T}A$?
- (b) What are the eigenvectors of A^TA ?
- 11. (20 pts) Find a singular value decomposition of $A = \begin{bmatrix} 3 & 0 \\ 0 & 0 \\ 4 & 0 \end{bmatrix}$.