Name: ______ Score: _____

Instructions: You must show supporting work to receive full and partial credits. No text book, notes, or formula sheets allowed.

- 1. (20 pts) True/False. For each of the following statements, please *circle* T (True) or F (False). You do not need to justify your answer.
 - (a) T or F? A matrix A is invertible if and only if $\det A = 0$.
 - (b) T or F? λ is an eigenvalue of A if and only if $\text{null}(A \lambda I)$ has a nonzero vector.
 - (c) T or F? If det(A) = 2, $det(B^{-1}) = 2$ then det(AB) = 4.
 - (d) T or F? The row space row(A) of a matrix A is always orthogonal to its column space col(A).
 - (e) T or F? If an invertible matrix A is similar to matrix B then $det(B) = -det(A^{-1})$.
 - (f) T or F? If W is the null space of a matrix A then the orthogonal complement W^{\perp} is spanned by the rows of A.
 - (g) T or F? An invertible matrix A is always diagonalizable.
 - (h) T or F? A symmetric matrix A is always invertible.
 - (i) T or F? An eigenvector of an invertible matrix A is always orthogonal to any eigenvector of a different eigenvalue of A.
 - (j) T or F? If the characteristic equation of a matrix A is given by $p(\lambda) = (\lambda 2)^3 q(\lambda)$ for some polynomial q(x) then the eigenspace E_2 must be 3 dimensional.
- 2. (10 pts) Given the following similarity relation $P^{-1}AP = D$.

$$\begin{bmatrix}
1 & 1 & -1 & -1 \\
0 & -1 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{bmatrix}
\overbrace{\begin{bmatrix}
1 & -1 & 0 & 1 \\
0 & 3 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 2
\end{bmatrix}}^{A}
\begin{bmatrix}
1 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 1 & 0
\end{bmatrix} =
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}$$

- (a) What are the eigenvalues of A and their algebraic multiplicities?
- (b) Give a basis for the eigenspace of the smallest eigenvalue.

- 3. (15 pts) Let Let $A = \begin{bmatrix} 5 & -6 & 4 & 4 \\ 8 & -13 & 8 & 12 \\ 0 & -4 & 1 & 8 \\ 4 & -8 & 4 & 9 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} 1 \\ 3 \\ 2 \\ 2 \end{bmatrix}$.
 - (a) Use a combination of row and column expansion and elementary row reduction to find the determinant of A.

(b) Verify that \mathbf{v} is an eigenvector. What is the corresponding eigenvalue?

4. (10 pts) Diagonalize matrix $A = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}$, i.e., find a diagonal matrix D and an invertible matrix P so that $A = PDP^{-1}$. (You don't need to find P^{-1} .)

5. (15 pts) Let $W = \operatorname{span} \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ -1 \\ 1 \\ 3 \end{bmatrix} \right\}$. Use the Gram-Schmidt process to find an orthogonal basis for W.

6. (10 pts) You are given the fact that $\lambda = 1$ is an eigenvalue of $A = \begin{bmatrix} 0 & 2 & 2 \\ 1 & -1 & -2 \\ -2 & 4 & 5 \end{bmatrix}$. Find a basis for its eigenspace E_1 .

- 7. (15 pts) Let $A = \begin{bmatrix} 1 & 0 & \sqrt{2} \\ 0 & 1 & 0 \\ \sqrt{2} & 0 & 2 \end{bmatrix}$.
 - (a) Find the characteristic equation of A.

(b) You are given the fact that vectors $\begin{bmatrix} -\sqrt{2} \\ 0 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 0 \\ \sqrt{2} \end{bmatrix}$, $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ are eigenvectors of A. Find an orthogonal diagonalization of A, i.e. find an orthogonal matrix Q and a diagonal matrix D so that $A = QDQ^T$.

8. (5 pts) Let W be a subspace of \mathbb{R}^n and W^{\perp} be its orthogonal complement. Prove that if a vector \mathbf{v} is both from W and W^{\perp} , i.e., $\mathbf{v} \in W \cap W^{\perp}$, then \mathbf{v} must be the zero vector $\mathbf{v} = \mathbf{0}$.

² Bonus Points: True of False: The Canadians celebrate the Thanksgiving on the same day as the Americans. (... The End)