Exam 2

Print Your Name Legibly:	NUID:

Do Not Copy Problem Statement. Submit Solutions to Gradescope by Their Problem Numbers, One Problem per Page. Do not use pencils. There Are Six Problems Plus a Bonus Question on Page 6. Submission Deadline: 10:45 AM. Read the "Rules and Format for Exams" before You Start.

- **1(15pts)** True/False. For each of the following statements, please *circle* T (True) or F (False). You do not need to justify your answer.
 - (a) T or F? If $P_{\mathcal{C}\leftarrow\mathcal{B}}$ is a change-of-coordinate matrix, then 1 must be one of its eigenvalues.
 - (b) T or F? The dimension of the row space of a matrix is the number of columns of the matrix minus the matrix's nullity.
 - (c) T or F? An invertible matrix A is always diagonalizable.
 - (d) T or F? A triangular matrix can have complex eigenvalues.
 - (e) T or F? The first column of the matrix A of a linear transformation $T: V \to W$ must be the coordinate with respect to a basis of W for the image under T of a basis vector of V.

Print Your Name Legibly: ______ NUID: _____

2(15pts) Let
$$A = \begin{bmatrix} 1 & -2 & 0 & 1 \\ -2 & 4 & 0 & -2 \\ 2 & -2 & 3 & 2 \\ 0 & 2 & 3 & 0 \end{bmatrix}$$
.

- (a) Find a basis of the row space of A that consists of row vectors of A.
- (b) Write all non-basis rows of A as linear combinations of the basis row vectors from (a).

Print Your Name Legibly: _____

NUID: _____

3(15pts) Let $A = \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & 1 \\ 3 & -3 & -2 \end{bmatrix}$.

- (a) Verify that $\begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 5 \\ -1 \\ 4 \end{bmatrix}$, $\begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$ are eigenvectors of A.
- (b) Is A diagonalizable? Justify your answer and find the diagonalization $A=P^{-1}DP$ if your answer is yes.

Print Your Name Legibly:	NUID:

4(15pts) Let $\mathcal{B} = \{1 + 2t, 2 + t - 5t^2, 1 - 3t^2\}$ and $\mathcal{C} = \{2t + 3t^2, 1 - 2t + t^2, 3 - 5t + 4t^2\}$ for \mathbb{P}_2 .

- (a) Verify that both \mathcal{B} and \mathcal{C} are bases for \mathbb{P}_2 . (*Hint:* use the coordinate isomorphism $[\cdot]_{\mathcal{E}}$.)
- (b) Find the change-of-basis matrix $P_{\mathcal{C} \leftarrow \mathcal{B}}$ from \mathcal{B} to \mathcal{C} .
- (c) Write p=1+2t as a linear combination of the polynomials of \mathcal{C} . Explain why it is related to the change-of-basis matrix $P_{\mathcal{C}\leftarrow\mathcal{B}}$.

Print Your Name Legibly: _____

NUID: _____

5(20pts) Let
$$A = \begin{bmatrix} 5 & 0 & -5 \\ 0 & 1 & 0 \\ 2 & 1 & -1 \end{bmatrix}$$
.

- (a) Find the characteristic equation of A.
- (b) Find all eigenvalues of the matrix.
- (c) Find the eigenspace E_{λ} only for the **real number** eigenvalue λ of A.
- (d) Verify that $\vec{v} = \begin{bmatrix} 2+i \\ 0 \\ 1+i \end{bmatrix}$ is a complex-valued eigenvector of A for eigenvalue 2-i.

Print Your Name Legibly: ______ NUID: ____

6(20pts) Let $\mathcal{M} = \left\{ A = \begin{bmatrix} a & b \\ c & 0 \end{bmatrix} : a, b, c \text{ any real numbers.} \right\}$ be the vector subspace of 2-by-2 matrices. Define $T: \mathcal{M} \to \mathbb{R}^2$ by $T(A) = \begin{bmatrix} a-2b+c \\ b+2c \end{bmatrix}.$

- (a) Demonstrate that T is a linear transformation.
- (b) Find a standard basis \mathcal{E} for \mathcal{M} .
- (c) Find the matrix of transformation for T from the coordinate space of \mathcal{M} to the coordinate space of \mathbb{R}^2 respect to their standard bases.