Name:

INSTRUCTIONS: No references, <u>no calculators</u>, no cellphones. Please **clearly organize your solutions** and emphasize the answers. You must show all your work to receive credit. When unable to solve, you may earn partial credit by outlining which solution strategy you would attempt.

The exam has a total of 65 points (= 100%).

- 1. (1 pt each) Suppose A is $n \times n$ matrix. List four different conditions equivalent to A being invertible
 - (i)
 - (ii)
 - (iii)
 - (iv)
- 2. (6 pts) Suppose $AB\mathbf{x} = \mathbf{b}$, where $\mathbf{b} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. Find \mathbf{x} if you know that

$$A^{-1} = \begin{bmatrix} 1 & 0 \\ 2 & 2 \end{bmatrix} \quad \text{and} \quad B^{-1} = \begin{bmatrix} 0 & 1 \\ -1 & 3 \end{bmatrix}$$

3. (8 pts) Find the inverse of the given matrix using the Gauss-Jordan method:

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

4. The following matrices (of dimensions 5×6) are row-equivalent:

Answer the following questions and **briefly** justify your reasoning:

- (a) (2 pts) What is the rank of A?
- (b) (3 pts) Are the rows of A linearly independent?

(c) (3 pts) Is the 6th (the last) column of A a linear combination of the first five columns?

(d) (2 pts) What is the nullity of A?

5. (10 pts) For the same row-equivalent matrices as in the previous problem:

Find a basis for the null space of A.

6. (5 pts) Let set S contain all points inside the sphere of radius 1: $S = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} : x^2 + y^2 + z^2 \le 1 \right\}$

Is S a subspace of \mathbb{R}^3 ? Either prove or provide a counterexample.

7. (2 pts) Solve for X: $(X^T + B)^T = A$

8. (3 pts) Suppose $(A - B)^{-1} = C^{-1}B$ (here the matrices (A - B) and C are invertible). Show that B must be invertible too.

- 9. The following vectors form a basis for \mathbb{R}^3 : $\mathcal{B} = \left\{ \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix} \right\}$.
 - (a) (5 pts) What are the coordinates of vector $\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ with respect to this basis?

(b) (1 pts) Now suppose the coordinates of some vector \mathbf{w} with respect to \mathcal{B} are $[\mathbf{w}]_{\mathcal{B}} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$. What is \mathbf{w} in the standard coordinates?

10. (5 pts) Let A, B be two square matrices, and let "0" denote the zero matrix. Either prove or provide a counterexample to the statement:

If
$$AB = 0$$
 and $A \neq 0$ then $B = 0$

11. (6 pts) Let A be $m \times n$. Show that every vector in row(A) is orthogonal to every vector in null(A).