(v)

Niarg			
NAME:			
			et A be an $n \times n$ matrix. Write 5 distinct conditions equivalent to stating that the linear A x = b has a solution for <u>any</u> vector b in \mathbb{R}^n .
		(i)	
(ii)			
(iii)			
(iv)			

2. (7 pts) Find
$$\det \begin{bmatrix} 0 & -1 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ -2 & 1 & -2 & -3 \end{bmatrix}$$

3. (5 pts) Give an example showing that $(A+B)^{-1} \neq A^{-1}+B^{-1}$ in general for two square **invertible** matrices A, B (of the same dimensions).

4. (6 pts) Give a basis for col(A)

$$A = \begin{bmatrix} 1 & 1 & 0 & -1 \\ 0 & 5 & -1 & 1 \\ 0 & 5 & -1 & 1 \end{bmatrix}$$

5. (6pts) Find the dimension of the vector space V and give a basis for V:

$$V = \{p(x) \text{ in } \mathcal{P}_2 : p(1) = 0\}$$

(recall that \mathcal{P}_2 denotes the vector space of all polynomials of degree ≤ 2)

6. Let A, B be $n \times n$ invertible matrices such that

$$A(X+I)B = (AB)^{-1}$$

(a) (6 pts) Solve for the matrix X. Simplify your answer as much as possible.

(b) (2 pts) Does X have the eigenvalue $\lambda = -1$? Explain.

7. (6pts) Let A_1, A_2, \ldots, A_k be invertible $n \times n$ matrices. Prove or provide a counterexample to the statement: the product $A_1 A_2 \ldots A_k$ must also be invertible.

- 8. Consider the matrix: $A = \begin{bmatrix} 4 & 0 & 1 \\ 2 & 3 & 2 \\ -1 & 0 & 2 \end{bmatrix}$
 - (a) (10 pts) Find the eigenvalues of A and state their algebraic multiplicities.

(b) (2 pts) Based on the eigenvalues and their algebraic multiplicities can you tell whether A is diagonalizable? (**briefly justify** your answer)

9. (10pts) A certain 3×3 matrix A has eigenvalues 5, 6, -1 and eigenvectors corresponding to these eigenvalues are respectively:

$$\left\{ \begin{bmatrix} 1\\0\\-1 \end{bmatrix}, \begin{bmatrix} 3\\1\\4 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}$$

Vector \mathbf{v} written with respect to the basis \mathcal{B} formed by the above eigenvectors (in the same order) has the coordinates

$$[\mathbf{v}]_{\mathcal{B}} = \begin{bmatrix} -1\\0\\1 \end{bmatrix}$$

Find \mathbf{v} and $A^{2008}\mathbf{v}$. Simplify the result where possible.

10. Some 3×3 matrix M has eigenvalues 1, 0, 2 and corresponding eigenvectors respectively are:

$$\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\1 \end{bmatrix} \right\}$$

(a) (2pts) Write down a diagonal matrix that is similar to M.

(b) (9pts) Find M.

- 11. Matrix $A = \begin{bmatrix} -7 & -3 & 0 & -3 \\ 3 & -1 & 0 & 3 \\ 0 & 0 & 1 & 0 \\ 3 & 3 & 0 & -1 \end{bmatrix}$ has an eigenvalue $\lambda = -4$.
 - (a) (6 pts) Find a basis for the corresponding eigenspace $E_{(-4)}$.

(b) (5 pts) Find an **orthonormal** basis for the orthogonal complement $E_{(-4)}^{\perp}$.

12. (8pts) Write down the second column of the matrix corresponding to the transformation T

which projects every vector in \mathbb{R}^3 onto the space $W = \operatorname{span} \left\{ \begin{bmatrix} 5 \\ -2 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} \right\}$

Bonus I. (3pts) Find the null space of the matrix corresponding to the above transformation.

13. (Bonus II: 7pts. Very little partial credit).

Let A be an invertible $n \times n$ matrix, and $\mathbf{x} = [x_1, x_2, \dots, x_n]^T$ be the solution to the linear system $A\mathbf{x} = \mathbf{b}$ for some vector $\mathbf{b} = [b_1, b_2, \dots, b_n]^T$. Then Cramer's rule gives an explicit formula for each coordinate of \mathbf{x} :

$$x_i = \frac{\det A_i[\mathbf{b}]}{\det A}$$
 for $i = 1, 2, \dots n$

where the matrix $A_i[\mathbf{b}]$ is obtained by replacing the *i*-th column of A with the vector \mathbf{b} .

$$\left(\text{ For example, if } A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \cdots & a_{nn} \end{bmatrix}, \text{ then } A_{2}[\mathbf{b}] = \begin{bmatrix} a_{11} & b_{1} & a_{13} & \cdots & a_{1n} \\ a_{21} & b_{2} & a_{23} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & b_{n} & a_{n3} & \cdots & a_{nn} \end{bmatrix} \right)$$

Prove this result.

Hint: How does **b** relate to the columns of A and the numbers x_i ? What do you know about the determinant of a matrix and the determinant of its transpose? How do row operations affect the determinant?