Math 221/821

Name:

Score:

Instructions: You must show supporting work to receive full and partial credits. No text book, notes, formula sheets are allowed.
$\mathbf{1}(\mathbf{1 5} \mathrm{pts})$ Solve the initial value problem

$$
y^{\prime \prime}+4 y^{\prime}+5=0, y(0)=-2, y^{\prime}(0)=1 .
$$

$\mathbf{2 (2 0} \mathbf{~ p t s)}$ Determine the form only for a particular solution for each of the equations. (You only need to solve the homogeneous equation once.)
(a) $y^{\prime \prime}+2 y^{\prime}+2 y=1+t$.
(b) $y^{\prime \prime}+2 y^{\prime}+2 y=e^{-t} \sin t$.
(c) $y^{\prime \prime}+2 y^{\prime}+2 y=1+t e^{3 t}$.
$\mathbf{3}(\mathbf{2 5} \mathbf{p t s})$ Use the method of undetermined coefficients to find a particular solution to the equation

$$
y^{\prime \prime}-y=t^{2}
$$

and then find a general solution.
$4(\overline{\mathbf{1 5}} \mathbf{~ p t s})$ If the characteristic equation for a 5 th-order homogeneous and linear equation with constant coefficients

$$
a_{0} y^{(5)}+a_{1} y^{(4)}+\cdots+a_{4} y^{\prime}+a_{5} y=0
$$

has 0 as a double root, and $3,-3 \pm i$ are the other roots, what is the general solution for the equation?
$\mathbf{5}(\mathbf{2 5} \mathbf{~ p t s})$ Use the method of variation of parameters to find a particular solution to the equation

$$
y^{\prime \prime}-2 y^{\prime}+y=\frac{e^{t}}{t} .
$$

(Note: you can use the fact that $y_{1}(t)=e^{t}, y_{2}(t)=t e^{t}$ form a fundamental set of solutions to the homogeneous equation.)

