Print Your Name:

Score:

Instructions: You must show supporting work to receive full and partial credits. No text book, notes, formula sheets allowed.

- 1(10pts) Consider the system of equations $\mathbf{x}' = A\mathbf{x}$ with $A = \begin{bmatrix} -7 & 10 \\ -4 & 5 \end{bmatrix}$.
 - (a) Find a general solution of the system of equations. You must show work to justify your answer.
 - (b) Sketch a phase portrait for the system of equations.
- 2(15pts) Consider the system of equations

$$\begin{cases} x' = 2x - y \\ y' = x^2 - y \end{cases}$$

- (a) Find all equilibrium solutions to the system.
- (b) Use linearization to classify each equilibrium point as unstable saddle, unstable (spiral) source, or stable (spiral) sink.
- 3(10pts) Use definition only to find the Laplace transform of the function

$$f(t) = \begin{cases} 2, & t < 3 \\ 0, & t \ge 3 \end{cases}$$

Using any other method receives no credit.

- 4(20 pts) Find the Laplace transforms $\mathcal{L}\{f(t)\}(s)$ for the following functions
 - (a) $f(t) = (t+1)^2$
 - (b) f(t) = u(t-2)g(t) if $\mathcal{L}\{g(t+2)\}(s) = \frac{1}{\sqrt{s^2+4}}$.
- 5(20pts) Find the inverse Laplace transforms $\mathcal{L}^{-1}\{F(s)\}(t)$ for the following functions
 - (a) $F(s) = \frac{2s}{s^2 + 2s + 5}$
 - (b) $F(s) = \frac{s+3}{s^2+3s+2}$
- 6(15pts) Use the Laplace transformation method to solve the initial value problem

$$x' - x = e^{-t^2}\delta(t - 1), \quad x(0) = 0.$$

7(10pts) Consider the differential equation for a mass-spring system with piece-wise forcing

$$x'' + 2x' + 3x = f(t), \quad x(0) = 0, \ x'(0) = 1$$

with

$$f(t) = \begin{cases} 2t, & 0 \le t < 1\\ 0, & 1 \le t < 3\\ 1, & 3 \le t < \infty \end{cases}$$

Find only $X(s) = \mathcal{L}\{x(t)\}(s)$. Do not simplify X(s). Do not solve for x(t).

2 pt Bonus Question: The Nebraska State River is _____