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Chapter Two

Differential Equations
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2.1 LINEAR EQUATIONS

We consider ordinary differential equations of the following form

dx
i (t,x).
where x is either a real variable or a vector of several variables, ¢ is a real,
independent variable which is often conveniently thought as a time, and f
is a given function of both variables. The dimension of the equation is
referred to the dimension of the dependent variable x.

In some cases, f does not depend on both variables. If f does not depend

on the time variable, the equation

is called an autonomous equation.
For simplicity we denote the derivative either by ‘prime’ &’ = dx/dt or by
‘dot’ & = da/dt. Thus the equation can also be written as

2= f(t,x) or & = f(t, ).

ONE DIMENSIONAL EQUATIONS

We begin by considering one of the simplest types of equations — 1 dimen-
sional, linear, with constant coefficient

2 = f(x) = ax, (2.1)

where a is a constant.

A solution of the equation is a function x(t) of time ¢ so that the equation
holds when z(#) is substituted in. For example, z(t) = 3e?! is a solution to
the equation

=2z
because by the chain rule and the derivative of exponential functions,
o' (t) = 3 - 2 = 2x(t).

The equation thus holds and 3e? is a solution. In contrast, z(t) = sint is
not a solution because

2/ (t) = cost # 2x(t) = 2sin(t).

Method of Trial Solutions. Finding solutions to an arbitrarily given equa-
tion is never trivial. Different equation types require different approaches,
which usually are not transferable from one type to another. Fortunately for
the equation (2.1) under consideration, what takes to solve it is an educated
insight not beyond the realm of elementary functions.

The equation 2’ = ax says that a solution z(t) is such a function that
its derivative a’(t) is essentially itself ~ x(¢f). What types of elementary
functions fit this description? There are many. But a simple candidate is
the family of exponential functions of the following form

Oert
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with C,r being arbitrary parameters. The question then becomes for what
parameter values of C and r is Ce" a solution? To this extent, the equation
a2’ = ax is the only constraint and there is only one way to find it out — plug
it in and see if it fits. First,

[Ce™) = Ce™ -7,
Setting it to the right hand side of the equation,
[Ce™] = Ce™ - r = a[Ce™
which is true if » = a. Hence, we conclude that
z(t) = Ce™

is a solution to the equation for any arbitrary constant C.

General Solutions: The appearance of one arbitrary constant in a solution
is expected for any first order differential equation of one variable because
of the following reasons. To solve differential equations is to find antideriva-
tives, almost always indirectly and implicitly, and each differentiation of one
variable generates one arbitrary ‘integration’ constant upon the completion
of such an antiderivative process. Thus, as a rule of thumb, we anticipate
two arbitrary constants for the solutions of a second order equation of one
variable, or a first order equation of two variables, and so on. In general,
we anticipate n x m many arbitrary constants for an nth order equations of
m many variables. Such a solution containing the right amount of arbitrary
constants is called a general solution. Hence, z(t) = Ce® is a general
solution to the equation 2’ = az.

The arbitrary constant C' can be determined by specifying one additional
condition to the equation. The case we consider almost exclusively is the
initial condition which in general takes the form

x(to) = X0

with tg, z¢ prescribed. In most cases we take ¢ty = 0. For example, using the
initial condition

x(0) = zo
the arbitrary constant C' is determined uniquely by the following
zo = 2(0) = Ce® = C.
Hence, x(t) = zoe® is the solution to the initial value problem
7 = f(z) =ax
{ x(0) = zo

Example 2.1.1  Solve the initial value problem

= 2z
{ z(1)=3
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Figure 2.1 Solution portrait of Example 1.

Solution: Since a = —2, z(t) = Ce~?! is the general solution. By the initial
condition

3=z(1)=Ce ?! = C =3¢?
and the solution to the initial value problem is

z(t) = 3e%e " = 3e2(1-1),

©

Typical solutions of the example are sketched in Fig.2.1, as well as its
vector field. Such a portrait is called a solution portrait.
Important properties of this type of equations are the following

® (t) =0 is a constant solution, called an equilibrium solution.
e [f a < 0, all solutions exponentially converge to the equilibrium solution
as t tends to infinity

lim Ce® = 0.

t—o0
The equilibrium solution x = 0 is said to be asymptotically stable.
e If ¢ > 0, all solutions, except for the equilibrium solution, exponentially
diverge to infinity as ¢ tends to infinity

oo, ifC>0
lim Ce™ =
t—o0 —o00, fC <0
Such an equilibrium solution x = 0 is said to be asymptotically un-

stable.

TwoO DIMENSIONAL EQUATIONS

Let
( " )
xr =
€2
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be a vector of two real variables x1, 22, and

A_{au a12}

a1 Q22
be a 2 x 2 matrix. The system of two linear equations of the following form
T = a1® + apws
{ 33/2 = 2171 + A22T2
can also be written in its matrix form

= Azx.

Method of Trial Solutions. Similar to the rationale for the scalar case,
we try it out to see if exponential functions of the following form

U
ngekt:< 1 )e,\t
U2

are solutions. Using the derivative convention
7-(%)
and its resulting algebraic rules, we have
(€M) =ge™ -\

Setting it to the right hand side of the equation, we have

(€M) =ge - X = Age™) = (Ag)e™.
Cancelling out e* we derive the following relation

AL =X = (A-A)¢=0.

Since we seek solutions other than the trivial equilibrium solution x = 0,
we want & # 0 for the solution candidate £e*'. Hence the condition above
implies that A must be an eigenvalue of the matrix A and £ must be an eigen-
vector of the eigenvalue A\. By a reason of matrix theory, A is an eigenvalue
if and only if it is the root the characteristic equation

|A — )\I| =)\2— (a11 == (7,22))\ + ar1a99 — ajsas = 0.

Depending on the nature of the roots, the method follows up one of three
possibilities, each goes through a distinct set of steps.

CASE I: DisTINCT REAL EIGENVALUES.

In this case, both A1, A2 are real and unequal. We first find one eigenvector
& for eigenvalue A\ by solving the equation

- A a u 0
A—\DE = ai 1 12 1 _ -
( & a21 G2 — A2 Ug 0
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This gives one eigensolution
xi(t) = &eM

Repeat the same steps for eigenvalue Ao to find an eigenvector & and an
eigensolution

xa(t) = Loe?!

By the Superposition Principle, a general solution is obtained as a linear
combination of the eigensolutions:

2(t) = Cixy (1) + Caxa(t) = Cr&reM’ + Crre?! (2:2)
where C, Cy are two arbitrary constants.

Example 2.1.2  Solve the initial value problem

(42 e (2)

Solution: Solve the characteristic equation
A= X| =X\ +4\+3=0.

We get Ay = —1, A9 = —3. For Ay, solve the eigenvector equation
o —4 2 Ul o 0
a-nne=| 25 (0)-(3)

—4uy + 2us =0 <= ug = 2u;.

It reduces to

Since only one nonzero eigenvector is needed, we pick one in a practical way
as simple and as convenient as possible. Take us = 1 and thus ugs = 2
follows. So the corresponding eigensolution is

xlz(;)et.

Repeat the same steps for Ao = —3 we find a second eigensolution

1 _
X9 = ( 1 ) € 3t.
The general solution then is

x@z@m@+@m@za(;)ﬁ+@(i)fm

The solution to the initial value problem is picked out from the general
solution by fixing the arbitrary constants Cy,Cs. To this end, we use the
initial condition

(4)=o=a(s)re(i)-[21](&)
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Figure 2.2 Phase portraits. (a) Example 2, (b) Example 3.

This is a linear equation for C7,C5. Solve it to get C; = —2,Cy = 3, and
the solution is

. 1 —t 1 3t —2€7t =+ 3873)5
z(t) = - ( 2 )e +3< 1 )e = ( et + 3eB

Fig.2.2(a) is a phase portrait of the equations in the phase plane of
x1,x2. It contains the eigensolutions, and a few typical solutions. Typical
features are the following:

©

e Eigensolutions x1(t),x2(t) lie on two radial lines through the eigenvec-
tors.

® Because the eigenvalues are all negative, all solutions converge to the
trivial solution z = 0, i.e. lim;_ z(¢) = 0.

® Because Ay < \; < 0, et = ¢73t decays to 0 faster than e*?t = e~?
does, all solutions are dominated by the slower decaying term C1& e~

x(t) ~ C’lgle)‘lt, as t tends to oo.

This explains why all solutions are asymptotically tangent to the radial
line through the eigenvector &;.

The equilibrium point with all negative eigenvalues is called a sink. If the
eigenvalues are all positive, all solutions other than the equilibrium point
diverge without bound. Such an equilibrium point is called a source.

Example 2.1.3 Find a general solution to the equation and sketch a
phase portrait.
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Solution: Solving the characteristic equation
JA=M|=X—-2X\-6=0
we get A} = —2, Ay = 4. Solving the eigenvector equation (A — \; 1) = 0,

we have
a=(o)e=(3)

for A\; and Ay respectively. The corresponding general solution is

2(t) = Crxa () + Coxa(t) = Cy ( ; ) e 4 O, ( ; >e4t

Fig.2.2(b) is a phase portrait of the equation. It is important to note the
following typical features:

® The eigensolutions x;(t) lie on two lines determined by the eigenvectors.
x1(t) converges to the origin, it is called a stable eigensolution. xo(t)
flies off to infinity, it is called an unstable eigensolution.

® In forward time ¢ — oo, a non-eigensolution z(t) is dominated by the
unstable eigensolution

z(t) ~ Cooe™,

asymptotically parallel with the unstable eigenvector &;.
® In backward time t — —oo, x(t) is dominated by the stable eigensolution

z(t) ~ Ci&re™,
asymptotically parallel with the stable eigenvector &;.

©

As a result, all solutions, except for the equilibrium solution z = 0 and the
stable eigensolutions C1x4(t), diverge without bound. Such an equilibrium
point with eigenvalues of opposite signs is called a saddle ®

One more subcase to consider is when one of the eigenvalues is zero, say
A1 = 0. In this case, the general solution is also given by Eq.(2.2)

I(t) = lel + 02528)\2t

with Cy, Cy being arbitrary constants. For Cy = 0, each of the point x(t) =
C1& is an equilibrium solution including the trivial one with C7; = 0. The
trivial equilibrium point is referred to as a stable node if Ay < 0 and a
unstable node if Ay > 0.

CASE II: REPEAT EIGENVALUES.

In this case, Ay = Ao = A which must be a real. It may has two eigenvectors
&1, & which are not constant multiple of each other, i.e., & # C& for any
C, or it has only one eigenvector £ and all other eigenvectors are constant
multiple of £.



REUNotes08-ODEs May 30, 2008

DIFFERENTIAL EQUATIONS 11

If it is the first scenario, it follows the same procedures as in the distinct
real eigenvalue case to obtain a general solution

,T(t) = Cl§1e’\t + nggeAt.

Generalized Eigensolutions. It is the second scenario that a refined
approach is required. The method of trial solutions so far gives us only one
eigensolution x; () = &eM. It is not enough to form a general solution which
requires two arbitrary constants. The goal is to find a second solution that
is not a constant multiple of x; ().

To do this, we follow the same rationale that led to our first eigensolution
x1(t), which is obtained from the pool of candidate functions of the form &e*t
whose derivatives are in the same pool. To find another solution outside the
pool, we enlarge it but require still that its functions fit the characterization
that their derivatives are also in the same pool. Here is such an enlarged
pool: functions of this form

(n+t&)e™,

which are products of first degree polynomials and exponentials of a fixed
parameter .
A few simple algebraic manipulations lead to the following

[(n+t&)eM = (M + £+ tAE)eM = A(n + t€)eM = (An + tA e

Cancelling out e* and equating terms with ¢ and terms without ¢ (since
we only need to find a solution as pragmatically as possible), we get the
following conditions on &, 7, A:

AE = X
An = M+¢§

(A-=ADE = 0

T (A=A = ¢

The first equation is the same eigenvalue-eigenvector relation obtained when
the functional pool is the original smaller one, ée*. Solution 7 to the second
equation is called a generalized eigenvector. To find one, we first solve
the eigenvalue-eigenvector problem to get A, £, and then solve the equation

(A=A)n=¢

for the generalized eigenvector, if indeed A is a double eigenvalue, ¢ is the
only eigenvector of A and all others are constant multiple of &.
The resulting solution

(n+ t€)e™
to the differential equation is called a generalized eigensolution.

Example 2.1.4 Find a general solution to the equations and sketch a
phase portrait,
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Figure 2.3 Phase portraits. (a) Example 4, (b) Example 5.

Solution: Solving the characteristic equation
JA—M|=X+4\+4=0

we get A1 = Ay = A = —2. Solve the eigenvector equation

amne=[ 3 3] (m)=(3)

&= < _12 ) and the eigensolution x;(t) = < _12 ) e 2t

To find a second solution, we solve the generalized eigenvector equation

(A=A =¢ = [_? _;1](2):(_12)

It reduces to

We get,

U1 + 2’02 = —1.
Since we seek just one solution, assigning vo = 0,v; = —1 will do. Hence, a
generalized eigenvector and the corresponding generalized eigensolution are

n= < _01 ) and xa(t) = (n + t&)eM = ( _1;275 )6—215 respectively.

A general solution is thus given as
Cp+ Ost

fE(t) = 0166_% + 02(77 + t§)6_2t _ ( —2C1 + 02(—1 — Zt) ) o2t

Fig.2.3(a) is a solution portrait of the equations in the phase plane of
x1,x2. It is important to note the following properties:
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® There is one radial line that contains solutions, the eigenvector line
through the origin and the eigensolutions.

® Because of the negative eigenvalue, all solutions converge to the trivial
solution = = 0, i.e. limy_ o z(t) = 0.

e In forward time as t — oo, the term tée~2* decays slower than the terms
without the multiple of ¢, it approximates and dominates the solution

x(t) ~ Colte?,

This explains why all solutions are asymptotically tangent to the eigen-
vector radial line through the origin.

® In backward time as t — —oo, the term tfe~2! diverge faster than the
terms without the multiple of ¢, it also approximates and dominates the
solution

z(t) ~ ColteM?,

This explains why all solutions are asymptotically parallel to the eigen-
vector line.

©

Remark. Because of the last two properties, a phase portrait for such a case
can be drawn without finding the generalized eigensolution. All needed are
the eigensolution and the vector field at one point. For example, at point
(0,1) the vector field is

Ho)=[4 al)=(4)

pointing right-down. The only way to incorporate the asymptotic behaviors
and this piece of information on vector field is to have the phase portrait as
shown.

CASE III: CoMPLEX EIGENVALUES.

Let A\12 = a £ be the eigenvalues. In this case, we only need to use one
eigenvalue, say \;y = a + i8. Like all other cases, we proceed to find an
eigenvector, which is usually a vector of complex entries. Let

5 o w1 + ivl
o U + iUQ
be an eigenvector with ui, us, v1,v2 real numbers. We then separate it into
real and imaginary parts in vector form as

§=u+ivwhereu:(u1 ) andvz(vl )
(%) U2

That is both u and v are vectors of real entries. Following the deduction
for solutions, we know z(t) = (u + iv)eM = (u + iv)e®tP is a solution.
However, it is complex valued, which is not what we eventually want. To find
two real valued functions, we further separate z(t) into real and imaginary
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parts of the form z(t) = x1(t) + ix2(t) with both x;(¢), x2(t) real valued
functions. (See example below to learn how to carry out the separation.)
Since z(t) is a solution, the following lines of reasoning show that both
x1(t), x2(t) are solutions as well.

x| (t) +ixh(t) = 2/ (t) = Az(t) = Axy(t) + iAxa(2).
Equating real and imaginary parts, we have
x| (t) = Axy(t) and x5(t) = Axa(t).

Hence, both x1(t),x2(t) are real valued solutions, and the corresponding
general solution is given as usual

I(t) = lel (t) + CQXQ(t).

Example 2.1.5 Find a general solution to the equations and sketch a
phase portrait.
PR B
x = 4 _5 |7

Solution: Solving the characteristic equation
[A— M| =X +6)A+13=0

gives A\; 2 = —3 £ 42. The eigenvector equation for \; is

(A= \I)E = [ 2_ZZ _2__5“2 >_(

which in components are

')

(2 — i2)21 — 22’2 =0

The two equations are redundant of each other, differing only by a constant
multiple (e.g., multiplying 1 + ¢ and the first equation becomes the second
equation). A simple eigenvector is obtained by assigning z; = 1 which gives
z9 = 1 — 1. Hence

€= ( 1£z) and z(t) = ( 1£i )e(—3+z‘2)t_

To separate z(t) into its real and imaginary parts, we use the Euler for-
mula for complex exponential:

et = ¢(cos b + isinb).
Use it to get
(73T — =3I _ =3 (0og(21) + i sin(21)).
Now using the complex multiplication rule

(a+1b)(c+id) = ac — bd + i(ad + be),
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we separate the solution z(¢) into its real and imaginary parts as follows:

a0 = (1. )e—3t+i2t _ ( L )e‘3t(cos(2t)+isin(2t))

e 3t cos(2t) + ie 3t sin(2t)

e~ 3t (cos(2t) E;S)in(%)) +ie 3t (sin(2t) — co§§2)t)) )
_3¢ cos(2t . 3¢ sin(2t

= e ( cos(2t) + sin(2t) > e ( sin(2t) — cos(2t) )

= x1(t) + ixa(t).

The corresponding general solution is

I(t) == Clxl(t) + CQXQ(t)
_ 3t cos(2t) 3t sin(2t)
= Cie™ < cos(2t) + sin(2t) > +Cae™ ( sin(2t) — cos(2t) >
o3t ( C1 cos(2t) + Cy sin(2t) )
(Ch — C3) cos(2t) + (Cy + C2) sin(2t)

Fig.2.3(b) is a solution portrait of the equations in the phase plane of
21, T2. Important features are as follows:

® Because of the negative real part of the eigenvalue, all solutions converge
to the trivial solution x = 0, i.e. lim;_,o x(t) = 0.

e All solutions spiral around the equilibrium solution = 0. The direction
of spiral can be determined by the vector field at one point. For example,
at point (1,0), the vector field is

Lo)=15 21G)-03)

It points left-up. Therefore the spiral is counterclockwise.

©

Remark. Using the information of the real part of the complex eigenvalues
and the vector field at one point, one can qualitatively sketch the phase
portrait of the equation without solving it. For example, had the real part
of the eigenvalues of the example above been positive and the vector field at
(1,0) been the same, solutions would spiral counterclockwise and away from
the origin.

©

Fig. 2.4 illustrates two more examples of the complex eigenvalue case.

Fig.2.4(a) is for the coefficient matrix A = -0 -l ] for which the

1 —0.1

real part, —0.1, of the eigenvalues is relatively small in magnitude, resulting
in a looser spiral than that of Example 2.1.5 seen in Fig.2.3(b). Fig.2.4(b)
0 1
-1 0
giving rise to all closed cycles for its orbits. The trivial equilibrium point
(0,0) is referred to as a center.

is for the coefficient matrix A = for which the real part is zero,

©
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The trivial equilibrium solution x = 0 to the linear equation x’ = Ax
is said to be asymptotically stable lim;_ ., x(t) = 0. It is not hard to
show that x = 0 is asymptotically stable for a linear system if and only

if all eigenvalues of A have a negative real part.

On the other hand, if

one eigenvalue has a positive real part, then the trivial equilibrium point is
asymptotically unstable. For the case of Fig.2.4(b) for which the real part
of the complex eigenvalues of A vanishes, the equilibrium point is stable but

not asymptotically stable.

HIGHER DIMENSIONAL SYSTEMS AND THE ROUTH-HURWITZ CRITERIA.

Theorem 2.1 (Routh-Hurwitz Criterial) For the characteristic equa-
tion of an n X n coefficient matriz A of a linear system of equations ¥ = A,

N = A= A"+ A" o by A+ by, =0,
the eigenvalues \ all have negative real parts if
Ay >0,A5>0,...,4, >0,

where
by 1 0 0 0 0 0
b3 b2 b1 1 0 0 0
Ap—| b ba by b b1 0
bor—1 bor—2 bor—3 bop_a bor—s5 bor—e ... by

and by =0 if i > n.

For the specific case of n = 2, the criteria reduces to
b1 = —tr(A) > 0 and by = det(A) > 0.

©
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For n = 3, it becomes
3
by = —tr(A) > 0,by = > det(Ay) > 0,bs = —det(A) > 0, and byby > bs,
k=1
where tr(A) is the trace of A (the sum of A’s diagonal entries), and Ay, is
the matrix obtained from A by deleting the kth row and the kth column of
A.

Exercises 2.1
1. Find the solutions to the equations
(i) ' = =2z, 2(0) =3

(i) 2/ = 2, 2(1) =2
2
2. Find general solutions of the equations, determine the stability of the
equilibrium solution x = 0, and sketch the phase portraits, which should

include the eigensolutions of the equations if apply.

(Eigenvalues: (i) —1,—2. (ii) 2,—1. (iii) 2+4. )
3. Determine the stability of the equilibrium point = 0 of the equations.

(i)x’_[f _(1)]17

(ii)x’_{é :g}r
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2.2 PHASE LINE AND BIFURCATION

Having solutions in formulas to differential equations are rare nor always
desirable. In most cases we seek a qualitative understanding of the solution
structure without displaying the solutions in formulas. The nature of such
methods are inevitably conceptual and geometrical.

Here we introduce a qualitative method for the simplest class of nonlinear
differential equations: the autonomous equations of one dimension:

= f(x).

A solution z(t) is simply a function of the time variable ¢t. They are remark-
ably simple for equations. The solution z(¢) can behave only in one of the
following three ways:

® x(t) remains constant for all ¢, which is called an equilibrium solution,
or equilibrium point.

® 1(t) monotone increases either without bound or approaches an equilib-
rium point.

® 1(t) monotone decreases either without bound or approaches an equi-
librium point.

These properties are captured by the graphs below.

’

X

/ x'=f(x)
—ﬁ/____}__e_/_______
NS A

a\/b c X a _—

— t

\Q\x

On the left is the graph of the right hand of the equation. Its z-intercepts,
a, b, c, captures all the equilibrium points. These points divide the phase
space, i.e., the z-axis, into intervals in each of which the rate of change
function f can take on one sign, positive or negative, since the only places
where it can possibly change signs are the equilibrium points at the end
points of the intervals. This implies that starting at any point inside an
interval with positive f, the solution increases in time and stays in the same
interval. Similarly, a solution decreases and stays in an interval of negative
sign of f if it starts in the same interval. The arrows designate the directions
of the orbital monotonicity.

On the right is a qualitative depiction of some typical solutions as func-
tions of the independent variable t. Equilibrium solutions stay as horizontal
lines. Others either converge to or away from equilibrium solutions. It is
useful to note that this solution portrait does not offer substantially addi-
tional information than the features already annotated on the z-axis in the
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Existence and Uniqueness of Solutions. An important theoretical question is if
an initial value problem

{ ' = f(t, )
w(to) = xq

has a solution and if it has a unique solution. The answer depends on the function f.
If f is continuously differentiable with respect to both ¢ and z in a neighborhood of
the initial point (tg, o), then it has a unique solution. In fact, the same conclusion
holds for somewhat weaker conditions, such as f is Lyapunov continuous. (A typ-
ical example of Lyapunov continuity is the function of absolute value f(t,z) = |z|.
Piecewise linear functions is another.) Hence, the existence and uniqueness question
is rarely an issue for differential equation models from sciences and engineering fields.

One immediate and importance consequence to the uniqueness of solutions to initial
value problems is that solutions having different initial conditions never intersect at
any moment in time. For example, the solution plot of two different solutions in the
tx-space must not intersect.

A special consequence is worth noticing for autonomous

equation =’ = f(z) in any dimensions. It is based on the
property specific for such equations that if z(t) is a solu-
tion, so is any time translation x(¢+ 0). (Just differentiate
and plug it into the equation to check.) The projection of
a solution (¢, z(t)) to the phase space z is the parameter-
ized curve z(t), which is called an orbit. The uniqueness
property of solutions to initial value problems implies that
an orbit cannot cross itself nor another orbit. For exam-
ples, the top two figures on the right are possible orbits but
the bottom two are not. (There are five orbits depicted in

the upper-left figure, including the open dot representing
an equilibrium orbit.)

One important exception is Newton’s law of gravity which introduces singularities to
equations governing celestial bodies. As a result solutions may not be unique coming
out the singularities, and celestial bodies do smash onto each others from time to
time.

left figure. In fact, the diagram has captured all important qualitative infor-
mation of the equation. For this reason we refer to such a plot as the phase
line, which is extracted and depicted alone as below.

——> 0 ¢—o—>o0—>—
a b c

You may have notices that solutions do not behave the same near all
equilibrium points. We have the following classifications:

® An equilibrium point is a sink if all solutions nearby converge to it.

® An equilibrium point is a source if all solutions nearby diverge from it.

® An equilibrium point is a node if some solutions converge to it and
some others diverge from it.

In the example depicted above, a is a sink, b is a source, and ¢ is node.
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We also say that a sink is asymptotically stable or a sink attracts all
solutions nearby, and a source is asymptotically unstable or it repels all
solutions nearby. A node is simply unstable.

Example 2.2.1 Sketch the phase lines of equations and classify the equi-
librium points.

(a) o' =2* = (b) 2/ = (1 —2%)(z —2)?

Solution: (a) First we plot the right hand of the equation as shown. It
intersects the z-axis at x = 0,1, which are the equilibrium points. The
signs of f(x) = x? — x in intervals partitioned by the equilibrium points
are determined by the relative position of the graph to the z-axis, + if it is
above the z-axis, — if it is below. The arrows are placed according to the
signs, right arrow for + and left arrow for —. These intervals with assigned
arrows are called orbits, which are the projections to the phase space x
of the solutions (¢, z(t)) from the ta-plane. We conclude from the phase line
plot that equilibrium point = 0 is a sink and x = 1 is a source.

(b) Following the same steps, the solution is given by the graph. For
stabilities of equilibrium points, x = —1 is a sink, x = 1 is a source, and
x = 2 is a node.

©

Phase Lines with Parameter and Bifurcations. We consider next
equations that depends on one parameter,

x' = f(:cv)‘)a

where ¢,z are the variables and A is the parameter. For each fixed \ value,
the qualitative dynamics of the equation is captured by its phase line. The
structure of the phase line may change for a different A value. To see such
changes, we may plot the phase lines one A value a time. But this is cum-
bersome and inefficient — it is not possible to draw phase lines for all A
values.

There is a more effective way. It is based on a lesson learned from the
phase line plot. That is, the equilibrium points of the equation together with
the sign of the right hand of the equation determine the phase line structure.
The phase line method with parameter is illustrated below.

' A

x'=f(x,)) x'=f(x,1)>0 [

AR Vs

/\/ VRS
7»7/ X'=f(r,1)<0
%Oﬁx/ o ' /X':f(ka)ZO g

The steps are summarized as follows.
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1. In the axA-plane, plot the level curve f(xz,\) = 0, called the equilib-
rium branch. A point, (2, \), on the curve gives an equilibrium point
x of the equation for the given parameter \.

2. The equilibrium branch or branches divides the region of interest into
subregions, in each of which f(z,\) does not vanish and therefore it
has a fixed sign.

3. To sketch the phase line for a fixed value A, just draw the horizontal
line through A. Any intersection of the line with the equilibrium brand
f(xz,\) = 0 is an equilibrium point for the equation for that A value.
The line is partitioned into intervals by the equilibrium points, falling
into f > 0 and f < 0 regions. The orbital structure is then drawn on
the line as you would for a phase line.

4. Use solid curves for the parts of the equilibrium branch whose equilib-
rium points are stable and dash curves for the ones whose equilibrium
points are unstable. They are referred to as the stable equilibrium
branches and unstable equilibrium branches, respectively.

In the hypothetical illustration above, we see that there are typical parameter
values for which the qualitative structure of phase lines do not change if one
change the parameter near by, such as the ones not going through the critical
points of the equilibrium branch. Yet there are a few atypical parameter
values that stand out, such as the ones going through the critical points. A
slight increase or decrease from these special values give rise to qualitatively
different phase lines, especially in the number of equilibrium points and their
stabilities. We refer to such a phenomenon as bifurcation. In particular,
we call a point, (Z,\), a bifurcation point, if f(Z,\) = 0 and if the phase
line changes qualitatively near the equilibrium point & when X varies slightly
from \.

We will introduce the types of bifurcation to be encountered in this chapter
through examples. These are saddle-node bifurcation, transcritical bifurca-
tion, and Hopf bifurcation. Other types that will not be used are introduced
through exercises. The Hopf bifurcation is for 2-dimensional systems and it
will be introduced in a later section.

SADDLE-NODE BIFURCATION.

Example 2.2.2 Consider the logistic model with a constant harvest rate

H,
dP P
E=TP<1—E)—H (23)

where r is the maximum per-capita growth rate, K is the carrying capacity,
and H is the constant harvest rate. Sketch the phase lines using H as the
parameter.

Solution: The equilibrium branch is defined by rP(1 — I—Iz) — H =0. By
chance, it can be solved as H = rP(1 — £) in the PH-plane. The branch

K
divides the plane into two parts: P’ > 0 below the branch and P’ < 0
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Logistic Model. Let P(t) be a population measure of a species at time ¢. The time
t can be in second, or day, or year, etc, and population P can be in a nonnegative

dP(t
number for the total biomass, or density. The derivative d1(t ) is the growth rate,
and
1 dP(t)
P(t) dt

defines the per-capita growth rate. P’(t) > 0, the population increases. P’(t) < 0,
it decreases. P’(t) = 0 for all t, it stays at an equilibrium, or steady state, P(t) =
a constant.

The logistic model for population growth is to assume that the per-capita growth rate

P(t
is proportional a dimensionless factor 1 — %, that is
1 dP(t) (1 P(t))
el S I P A7)
P(t) dt K

with r, K been nonnegative constants. Since P > 0, r is the maximal per-capita rate,
referred to as the intrinsic rate. For P < K, the per-capita rate P’/P is positive,
and the population increases. For P > K, P'/P < 0, and the population decreases.
For this reason, K is called the carrying capacity.

The model is usually presented in the following standard equational form

d—P:rP(l—E)
dt K

By a phase line analysis, we find that P = 0, K are the only equilibrium points, for
which P = 0 is a source and P = K is a sink. Thus, for any nonvanishing initial
population Py, the solution through Py at ¢ = 0 converges to K, i.e., the population
eventually stabilizes at its carrying capacity K.

above the branch. The branch has a maximum point in H. It is found by
elementary calculus to be

(P,H)_<5,f). 1 P <0

2 4 rK/4

The parameterized phase lines are as .7 - \

shown. Notice the qualitative differences /" P10 \

for harvesting rate H above and below H. ___ & ,

H is a bifurcation value and (P, H) is a // 0 K/2 K\’
bifurcation point by definition. : P'=0

More precisely, the bifurcation point (P, H) of this example is a prototyp-
ical case of a saddle-node bifurcation. It is characterized by the following.

Definition 2.2 An equilibrium point (Z,\) of
' = f(z,\)

is a saddle-node bifurcation point if it satisfies the following conditions:



REUNotes08-ODEs May 30, 2008

DIFFERENTIAL EQUATIONS 23

® For )\ from one side of \, the equation has two equilibrium points, one
stable and one unstable. Both equilibrium points emerge at & as A\ con-
verges to A

® For A from the other side of X, the equation does not have an equilibrium
point near T. That is as \ crosses \ into this region, the two equilibrium
points emerge at T and then disappear.

The mathematical results of the example above have the following biolog-
ical interpretations.

e For H < H, the right equilibrium point is the continuation of the car-
rying capacity, and it is stable. The equilibrium state decreases when
the harvest rate H increases. Thus this branch right of the bifurcation
state P is called the harvest mediated carrying capacity.

e For H < H, the left equilibrium state is the continuation of the non-
existence state P = 0, and it is unstable. In contrast, it increases when
H increases. If the population starts below the left equilibrium, it will
reach the extinction state P = 0 in a finite time. If it starts above
the equilibrium, it converges to and stabilizes at the harvest induced
carrying capacity. For this reason, the equilibrium branch left of P is
called the harvest mediated survival threshold.

® Because the threshold branch increases and the capacity branch de-
creases as H increases, the two branches head to each other. In this
case they co... at the bifurcation point P, which is also referred to as
a crash fold point. For the harvest rate greater than the critical value
H, the population crashes down and eventually dies out, regardless its
initial population.

TRANSCRITICAL BIFURCATION.

Example 2.2.3 Consider the logistic model with a constant per-capita

harvest rate,
dP P
i rP (1 — ?) —hP (2.4)

where as before r is the maximum per-capita growth rate, K is the carrying
capacity, and h is the constant per-capita harvest rate. Sketch the phase
lines using h as the parameter.

Solution: The equilibrium branch is defined by rP(1 — £) — hP = 0. Unlike
the constant harvest case, it is solved into two branches:

P
P =0 and 1——=)—h=0.
an ( K)

The latter defines a line, having h = r as the h-intercept and P = K as the
P-intercept.
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By inspection, we see that (P,h) = h

(0,7) is a bifurcation point. Specifically, \P: =0
the threshold branch P = 0 changes its ~
stability from unstable to stable as h in-

creases through r. And the capacity pr<o| P’;N

branch through (K, 0) changes its stabil- “0 K\ P
. |

ity from stable to unstable. P'=0 P=0

P'<0

{ 60—

r

/

©

The bifurcation point (P, h) = (0,7) of this example is a prototypical case
of a transcritical bifurcation. It is characterized by the following.

Definition 2.3 An equilibrium point (Z,\) of
o’ = f(z,N)

is a transcritical bifurcation point if it satisfies the following conditions:

® There are two branches of equilibrium points intersect at (T,\) at a
nonvanishing angle.

® The equilibrium point on any branch of the two exchanges stability as
the parameter X passes through \.

In the context of population dynamics, the transcritical bifurcation point
(0,7) of the example above is called the capacity transcritical point. In
some cases where the transcritical bifurcation takes place on the survival
threshold branch, the point is called the threshold transcritical point
instead.

Exercises 2.2

1. Sketch the phase lines of the equations; determine the stabilities of the
equilibrium points; and sketch the solution portraits in the tx-plane as
well.

(i) 2’ = —2% +22% — 2
(i) 2’ = -3+ 222 — 2+ 0.5
(iii) ' = 2sin(rz)

2. Find all equilibrium points, and determine their stabilities by the deriva-

tive test. Verify your answer schematically by sketch the phase lines.

3 2% -2z

2 0.3z
0.25+ =

(i)' ==

()2 =z —=z for = > 0.
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3.

Sketch the bifurcation diagram of this one-parameter family of differential
equations

v’ = fu(r) = ax — 23

The type of bifurcation points this example represent is called Pitch-fork
Bifurcation.

Consider the RC-circuit shown with an ‘N’ nonlinear IV characteristics
I=F({V)=V3-2V2+V. It is model by this one-parameter family of
equations

C% =-F(E+Ve)— Ly
dt
with the forcing current I;,, being the parameter. Sketch the bifurcation
diagram of the equations, and identify the type of bifurcation.
Consider the predator-prey model

=zl —-1x)— <

(1—=) 1Y
for which the predator population density y is considered as a parameter.
For a fixed vale

0<pB<1

sketch the bifurcation diagram in the first quadrant z > 0,y > 0 with y
being a parameter.




(f(x,2),8(x,)

(x,)
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2.3 PHASE PLANE METHOD

We now extend the phase line method to autonomous systems of two equa-
tions

y = g(x,y)

where f, g are nice functions which guarantee the uniqueness of solutions to
initial value problems.

In the (x,y) phase space, a solution gives rise to an orbit {(z(t),y(t))} as
a curve parameterized by the time variable ¢. At each point of the orbit, it
moves in the direction and speed given by the velocity vector (z'(t),y'(t)),
which is prescribed by the vector field (f(x(t),y(t)), g(«(t),y(t))). That is,
an orbit is not just any curve in the phase space. It must follow the vector
field (f(z,y),g(x,y)) at every point (z,y) in the space. See illustration.

The description above gives rise to the following approximation of orbits.
We generate a mesh grid in z,y with a user defined mesh size. At each
grid point (z;,y;), we plot the vector field (f(xs,y;),9(x:,y;)). Then an
orbit starting at any point inside the mesh can be sketched by following the
vector field as closely as possible.

Though the method above is suitable for computers, it does not make a
good use of human intuitions. This is where the phase plane method enters.
It gives an insightful and systematic way to organize the vector field. In
some cases it gives a rather comprehensive, qualitative understanding on
the orbital structure of the equations. In the cases it fails to be complete, it
nevertheless gives a good, first order approximation to the structure.

The Method

Like the phase line method, the phase plane method again makes use of
equilibrium points to organize the vector field. Particularly indispensable
are the curves defined by f(x,y) = 0 and g(z,y) = 0. If one thinks y as a
parameter, the former f(z,y) = 0 would define the equilibrium branch for
the z-equation. Symmetrically, if one thinks x as a parameter, the latter
g(z,y) = 0 would define the equilibrium branch for the y-equation. For
these reasons, we call the curve f(x,y) = 0 the z-nullcline and g(z,y) =0
the y-nullcline.

Here is a brief description for the procedures.

1. In the (x,y) phase space, sketch the z-nullcline f(z,y) = 0. It divides
the space into regions of f > 0 and f < 0. Use the one-point testing
technique to label these regions.

2. Do the same for the y-equation: sketch the y-nullcline g(z,y) = 0 and
identify the regions with g > 0 and g < 0.

3. On each segment of the z-nullcline partitioned out by the equilibrium
points, place a vertical vector filed (2/,y') = (0,g). The vector points
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up if the segment lies in a 3 = ¢ > 0 region, and points down if
otherwise.

4. Do the same for the y-nullcline, in reverse. That is one each segment of
the y-nullcline, place a horizontal vector filed (2/,y") = (f,0), pointing
right if it lies in a 2’ = f > 0 region or left if it lies in a f < 0 region.

5. In each region bounded by z-nullcline and y-nullcline, the vector field
(f, g) never vanish in either component. Place a vector inside the region
according to the following convention

Sign(xlvyl): [+7+] [+7_} [_7"’_] [_7_}
vector field (z’,y’): Ve AN N v
description:  right-up  right-down left-up left-down

6. Sketch any special as well a few typical orbits following the directions
of the vector field in the regions bounded by the nullclines. In the
illustration below, for example, orbit 1 coming out the equilibrium
point in the [+, +] region is such a special orbit, called separatrix.
It moves right-up in the region. Orbit 2 is another. Orbits 3 and 4
are typical ones. Notice that orbit 3 must be drawn to move left-up
in the [—, 4] region, cross the z-nullcline vertically, turn around in the
x-component and move right-up in the [+, +] region. In contrast, when
orbit 4 crosses the y-nullcline, it must do so horizontally.

y

As one can see in the illustration above, one can fill other special and
typical orbits in the [+, —] and [—, —] regions to complete the steps of the
method. Also, in this hypothetical case, the orbital structure near the equi-
librium point shown is completely understood — it has the structure of a
saddle point.

A word of caution for beginners. Equilibrium points lie always on null-
clines, but only in rare situations a nullcline becomes a solution to the dif-
ferential equations.

PHASE PORTRAIT OF 2-D LINEAR SYSTEMS.

To illustrate the method, we first use it on a linear system to show how
the phase portraits of such systems can be completely understood especially
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when combining with the information of their eigensolutions.

Example 2.3.1 Recall the linear system of equations (2.1.3) from Sec.
2.1 together with their linearly independent eigensolutions:

d=] 2 e = e =, )
|0 e me=(0) ()

To sketch a phase portrait by the phase plane method, we first sketch the
z-nullcline: =’ = —2z + 3y = 0, and the y-nullcline: 3y’ = 4y = 0 as show in
the figure. These lines divide the plane into 4 regions labelled as I, II, III,
IV for which the vector field (z/,y’) is annotated below both in the table
and the graph.

y x'=0
I 11
S
| I I III N4 N
2 ‘ 4 _ _ 4 y’ = 0
, X
Y + + - - /’
vector field | 1 N/ N N J
v / 11

The vector field is also annotated on the nullclines as shown. To determine
the signs of 2/, 3’ in the region I, for example, we only need to pick a simple
point from the region, say (0,1) from the y-axis, and we find 2/ = f(0,1) =
3>0andy = g(0,1) =4 > 0, and hence the same signs for 2’ and '’
respectively throughout the region. In region II, we may pick a point (N, 1)
with a large N > 0, which in turn gives 2’ < 0 and y’ > 0. The direction of
the vector field on the nullclines can also be determined similarly. Notice that
the y-nullcline is special — it happens to be the contracting eigensolutions.
The expanding eigensolutions fall inside regions I and III, not crossing any
nullcline lines. In contrast all other solutions either lie on or cross one
of the nullclines. Notice also, even without the exact eigensolutions, their
qualitative properties can be deduced from the phase portrait alone and so

can be the saddle property of the trivial equilibrium solution.
©

DynaMIcS OF COMPETITION.

We now apply the method to nonlinear systems of equations. Consider a
population model of two competing species x, y, each separately is governed
by a logistic growth, each’s per-capita growth rate is diminished at a rate
proportional to the other’s presence. The model is as follows

2 =rpx (1 — Ki> —CyrYy =T [7‘1 (1 — Ki) - ny] =zf(z,y)

(2.6)
yI:Ty l_i — CgYyr =y |T 1—i — CxX :yg(x y)
y K, Y K, 7
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Here 7;, K; are the intrinsic rates and carrying capacities, and ¢; > 0 are the
per-capita competition coefficient of species j against species 1.

Species x is said to be competitive if its per-capita growth rate is positive
at the y-capacity point (0, K,)), that is

1dx Tx

—— =f(0,K,)) =1, —c, K, >0 <= K, < —.

x dt 1(0,K,) u ) * v Y Cy
Notice that according to this characterization, species x is competitive if
species y’s per-capita adversary impact coefficient ¢, is relatively small.
Similarly, y is competitive if it can grow per-capita at the xz-capacity point
(K,,0) so that

1
K, < L.

Cx

Example 2.3.2 (Competitive Coexistence.) Use the phase plane method
to analysis the dynamics of the competition model Eq.(2.6) when both
species are competitive, i.e.,

Ky <ry/cy and Ky, <rg/cy.

Solution: We begin by sketch the z-nullcline: xf(z,y) = x[r, (1 — 2/K;) —
¢yy] = 0 which are separated into two branches

z=0 and ry(l —z/K;) —c,y=0.

The latter is the y-competition mediated xz-carrying capacity: along which
x decreases as y increases, having the x-intercept at the z-carrying capacity
(K;,0), and the y-intercept at the z-capacity transcritical point (0,7,/cy).
See the illustration.

Similarly, the y-nullcline yg(x,y) = y[ry(1 — y/K,) — czz] = 0 has two
branches

y=0 and 7, (1 —y/K,) —czx =0,

with the latter being the z-competition mediated y-carrying capacity: along
which y decreases as x increases, having the y-intercept at the y-carrying
capacity (0, K,), and the z-intercept at the y-capacity transcritical point
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(ry/ce,0). Because of the dual competitive assumption, the z-capacity tran-
scritical r,/c, is greater than the y-capacity K, on the y-axis and the y-
capacity transcritical r,/c, is greater than the z-capacity K, on the z-axis
as shown.

Next, we label the subregions in the first quadrant that are bounded by the
nullclines as I, IT, III, IV. The signs of f, g in these regions are as shown below.
The signs are determined by one-point test technique. For example, in region

| 1 1O I v

+ - - 4
Yy’ + + - -
vector field | ~ N/ N
I, the sign of 2/ can be determined by evaluating 2’ = zf(x,y) at any

point in the region. Taking (K, /2,0) for convenience, we find 2’|k, /2,0y =
(K;/2)f(K,/2,0) > 0 and hence a ‘+’ sign in the table.

Having determined the directions of the vector field (2’,y’), a representa-
tive vector field is placed in each of the region.

One the nullclines, the vector field is either horizontal or vertical. For
example, on the part of the y-nullcline which forms the common boundary
of region I and region IV, 2’ is positive. Hence, it is given a right arrow.

Last, we are ready to sketch special and typical orbits. First, equi-
librium orbits are simply the intersections of the z-nullcline and the y-
nullcline. There are 4 of them, the trivial mutual extinct state (0,0), the
competition-free individual capacity states (K, 0), (0, K,)), referred to as the
z-equilibrium and the y-equilibrium respectively, and the coexistent state
referred to as the xy-equilibrium. The zy-equilibrium point can be solved
explicitly from f(z,y) =0, ¢g(z,y) = 0 if needed.

There are at least four special, non-equilibrium orbits, one in each region
I, IT, III, TV, connecting equilibrium orbits without crossing the nullclines.

Last, sketch a few typical solutions to complete the phase portrait. For
example, starting at any point in region III, below the special orbit converg-
ing to E, the orbit must develop left and down, cross the y-capacity nullcline
horizontally, turn upward but still move left, remain in region II thereafter
and tend to E. F is asymptotically stable.

We can now conclude that starting at nonvanishing populations for both
species zg > 0,y > 0, the orbit converges to the equilibrium point . The
biological significance of this result is that mutually competitive species can
coexist at an equilibrium state in a long run.

©

We have used two figures in the example above to highlight the steps. You
can certainly plot the orbital structure from the right figure onto the left one
if it does not become too cluttered.
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Again like the case of phase lines, the phase
portrait of a system of equations captures all
essential geometric properties of the solutions
to the system. For example, one can qualita-
tively construct the time series of a solution
from its orbit in the phase plane. The times
series on the right are reconstructed for Or-
bit 1 from the phase portrait of the example
above. We note that the vertical dash line
indicates the time at which the orbit crosses
the z-nullcline before its converging to the co-
existing equilibrium point.

31

Example 2.3.3 (Competitive Tug of War.) Use the phase plane method
to analysis the dynamics of the competition model Eq.(2.6) when both

species are not competitive, i.e.,

K, >ry/c; and K, >r;/cy.

Solution: We follow the same steps and analysis as in the previous example.
The critical difference in result is that the the z-capacity branch and the y-
capacity branch switch their relative position with each other, in particular
the competition free capacities K; switch position with the capacity trans-
critical point 7;/c; on the axis i. As a result, the vector field are drastically
different in subregion IT and IV as shown in the table below. By making

| I II 111 I\Y
x’ + + - -
Y’ + - - +
vector field | ~ N\, N

appropriate changes to the previous plot, a phase portrait is shown below.
Again one can use just one plot by including the orbits in the left figure if

it is not too cluttered.
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Orbit 1 and orbit 2 are separatrixes. They divide the first quadrant
into two parts. The region above the separatrixes is the non-competitive
region for x, in which all orbits converge to the y-capacity state (0, K,)
with « driven to extinction. The region below the separatrixes is the non-
competitive region for ¥, in which all orbits converge to the z-capacity state
(K4, 0) with y driven to extinction. In other words, the outcome depends on
the initial state of the population. Initial states on the separatrixes or the
equilibrium state F cannot persist. Any small perturbation will throw the
states into one of the non-competitive regions, driving off one competitor.
There is no coexisting state.

©

The remaining case with one species competitive and the other not is left
as an exercise, which leads to the phenomenon of competitive exclusion.

Exercises 2.3

1. The nullclines and some information about the vector field for a system
are given in each of the diagram. Use the phase plane method to sketch
a phase portrait of each system.

,
Y —_ V> 0 ' y / ’
~\\\ —— 0 = <
= \q/”’ 1< \J‘\ //
~.
//’ N y \\\ / N
2 N ol
% .
/7 \\\ =0 N /// AN
/
\ > /’ {
/
/ Y>>0 Nx'=0 | o= -~
\ x \ *

(Remark: Problem (b) would expose a weakness of the method.)

2. Consider again Problem 2 of Exercise 2.1. Refine the phase portraits of
the equations by incorporating the phase plane method.

(1)%:{2 :Hx
(ii):v'z[l g}x

(111)95’:{_; Hx

3. Consider the population model of two competing species Eq.(2.6). Use
the phase plane method to sketch a phase portraits for the case in which
one species is competitive and the other is not. The dynamics outcome
of such a case is referred to as competitive exclusion.
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4. Consider the population model of two cooperative species x, y:

¥ =rx (1 — %) +byxy

Yy
y = TyY (1 — E) + byyx

where all parameters r;,b; are positive.
(a) Show that it has an equilibrium point E = (E,, E,) with positive
components F, > 0, E, > 0 under the following condition
TyTy

bab
' S KUK,

(b) Use the phase plane method to sketch a phase portrait of this case.
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2.4 PHASE PLANE WITH FAST AND SLOW TIME SCALES

The dynamics of a system of equations is determined by its vector field. The
phase plane method takes into account the direction of the vector field but
ignores so far its magnitude. This works well for some cases such the ones
considered in the previous section. In this section, however, we consider
systems for which the magnitude of their vector fields is too obvious to
ignore. Such are systems having different time scales.

Consider systems of the following form

{ ex’ = f(x,y)

y' =g(xy)
where 0 < ¢ < 1 is ‘very’ small parameter as signified by the notation ‘< 1°.
Looking at it from the point view of vector field, it is more convenient to
write it as

(2.7)

y' =g(z,y)
We see immediately that the magnitude of the vector field changes dramat-
ically with e: if f(z,y) # 0 at a point (z,y), the z-component of the vector
field is extremely large for very small ¢ < 1, or extremely small for very
large € > 1. The table below shows the effect of ¢ on the vector field (2, y")
in the case when both f and g are positive.

[+, +] vector field: f / / / i

e >1 >1 =1 <1 <1

At one extreme when e ~ oo, the vector field is nearly vertical (0, g). At the
other extreme when € ~ 0, the vector field is nearly horizontal (f/e, g) with
a near infinity magnitude in the horizontal direction.

Terminology: Systems of the form (2.7) with 0 < e < 1 are referred to as
singularly perturbed systems and the parameter ¢ a singular parame-
ter. Since the rate of change for the z variable is large with f/e relative to
the rate of change for the y variable, variable z is called the fast variable
and variable y is called the slow variable.

The equation form (2.7) can be cast in an alternative form by the following
change of time variable

t dt
7 = — so that dr = —
€ €

By the chain rule,
de dedt  dx

dr  dtdr  dt
Use these relations to rewrite Eq.(2.7) as

v =eg(x,y)

d 1d
and similarly, d_ZtJ = gd_y
T

(2.8)
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dz

where z = —.

Because ofT the conversion relation 7 = t/e, t is called the fast time and
7 is called the slow time. For example, if the unit of ¢ is in year, and
e = 1073, then 1 year in the ¢ time scale equals 1000 years in the 7 time
scale. Correspondingly, the original form Eq.(2.7) is the singularly perturbed
system in the fast time scale and the equivalent form Eq.(2.8) is the system
in the slow time scale.

TIME SCALE METHOD.

The theory of singular perturbation is about how dynamics of singularly
perturbed systems change with their singular parameters. Here we introduce
the most elementary geometric method of the theory. It incorporates the
the diverging magnitude of a singularly perturbed vector field into the phase
plane method. Thus, we may call it phase plane method with time
scales or simply the time scale method. Essential to the method are two
types of orbits at the singular limit € = 0. We begin with the simpler kind.

Fast Orbits.

This orbit type is associated with the slow time scale system (2.8) at the
singular limit € = 0:

§=0.

It is called the fast subsystem of the perturbed systems (2.7,2.8). This may
first appear paradoxical and confusing. However, upon a further reflection,
it makes a perfect sense — a fast moving object is best analyzed in a slow
motion time scale.

The key realization that drives the analysis for this subsystem is that be-
cause x moves so fast, variable y appears frozen in time. The equation y = 0
says it all: y stays at its initial state wherever it starts, and therefore it can
be thought as a parameter one value a time. Hence, the orbital structure of
the subsystem is completely determined by the phase line method with pa-
rameter from Sec.2.2. For illustration purposes, let the xz-equilibrium branch
(more accurately the z-nullcline for the full system), f(x,y) = 0 be as in
Fig.2.5(a) together with phase lines parameterized by the slow variable y.
The phase line z-orbits are called the fast orbits.
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Algebraic-to-Differential Reduction Method for Slow Solutions. One way
to find a solution (z(t),y(t)) with an initial point (2(0),y(0)) = (zo,yo) to the slow
subsystem (2.10) is to follow the steps below.

1. Verify that point (zo,yo) is on the z-nullcline, satisfying f(zo,yo) = 0.

2. Check if variable & can be uniquely solved as a function of variable y, i.e. © =
z(y), from the algebraic equation f(z,y) = 0 in a small open interval containing
yo satisfying z(yo) = zo.

3. If both conditions above are satisfied, then solve the reduced initial value problem

{ v =g(z(y),y)
y(0) = yo

4. If y(t) is a solution, then a solution to the slow subsystem is found by backward
substitution as (z(y(t)), y(t)).

Whether or not this analytical method works critically depends on the second con-
dition above. By definition, a point (z«,y«) is called a turning point if it satisfies
f(z«,y+) = 0 but z cannot be uniquely solved from f(z,y) = 0 as a function of y.
Hence, the solution procedure above fails at a turning point. As a result the slow
subsystem may or may not have a solution, or if it does, the solution may not be a
unique solution.

Turning points are not new. We have encountered them in a different disguise. In
fact, we have the following duality.
Turning Points are Bifurcation Points:

A point (z«,y«) is a turning point of the slow subsystem (2.10) if and
only if it is a bifurcation point of the fast subsystem (2.9).

Slow Orbits.

This orbit type is associated with the fast time scale system (2.7) at the
singular limit € = 0O:

O:f(:z,y)

2.10
Y =g(z,y) (210)

It is called the slow subsystem of the perturbed systems (2.7,2.8). Again,
similarly to the reason of analyzing the fast dynamics at the slow time scale,
it is best to analyze slowly moving objects at a fast time scale.

The key realization that drives the analysis for this subsystem is that its
orbits must lie on the z-nullcline, f(z,y) = 0, and the dynamics is driven
primarily by the y-equation. Since the equation is only one-dimensional
on the z-nullcline curves, the phase line method can be adapted onto the
restricted curves. As a result the dynamical structure is rather simple.

Slow Solution Structures. The orbits of the slow subsystem can only
behave in one of the following three ways:

® Stay at an equilibrium state.
® Monotone increase or decrease toward an equilibrium state.
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Y x=0

5 x'<0

Figure 2.5 Time Scale Method

® Monotone increase or decrease toward a turning point of the system
that defines a boundary point of the x-nullcline branch to which the
slow subsystem is restricted.

In other words, the structure is completely determined by equilibrium points
and turning points. It is this geometric approach that we will use predomi-
nantly throughout.

The phase line method for the slow subsystem is illustrated as in Fig.2.5(b)
which is the continuation of the hypothetical case of Fig.2.5(a). The directed
curves on the z-nullcline are the orbits of the slow subsystem. They are
called the slow orbits. This hypothetical illustration display all the slow
orbit types listed above:

® The intersection of z-nullcline and y nullcline is automatically an equi-
librium orbit of the slow subsystem.

® Orbits 1 and 2 converge to the equilibrium point.

® The turning points are saddle-node bifurcations at which the slow sub-
system ceases to be well-defined. Orbits 3 and 4 head toward the right
turning point, reaching it at a finite time because of the nonvanishing
velocity of the y variable, and out of bound thereafter.

The reduced equations that define orbits 3 and 4 are completely different
from each other. That is why the turning point must not be falsely perceived
as an equilibrium point. For the same reason, the left turning point is not
an equilibrium point. It deceptively looks like a source, which is a boundary
point of two different branches of the slow subsystem.
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Why Singular Orbits? The answer lies in the fact that orbits of the perturbed full
system (2.7) with 0 < & < 1 converge to singular orbits as € — 0. More specifically,

let
(1), y" (1))
denote an orbit of Eq.(2.7) having the same initial point

(z°(0),4°(0)) = (z0,0)

for all 0 < e < 1. Then the limit lim._o(z°(¢), y°(¢)) is expected to exist, and the
limit is a singular orbit through the same initial point. In other words, singular orbits
are the Oth order approximation of the dynamical structure of the system when ¢ is
small.

Singular Orbits.

Incorporating both slow and fast orbits in one figure, we obtain the phase
portrait of the systems (2.7,2.8) at the singular limit & = 0. For the illustra-
tive example, it is shown in Fig.2.5(c). By definition, the concatenation of
fast and slow orbits with a congruent orientation is called a singular orbit.
Shown as examples, the ordered concatenation of singular orbits 1, 2, 3, 4 is
one singular orbit. So is the combination with 2, 3, 4. Orbits 5 and 6 form
another. Equilibrium points of the full system is a trivial kind of singular
orbits.

Fig.2.5(d) illustrates how a perturbed orbit (with 0 < & < 1) of the singu-
lar orbit {1,2, 3,4} (with € = 0 from (c)) may look like, starting at the same
initial point. Notice that, the orbit’s profile must also obey the vector field
behavior deduced from the phase plane method. For example, it still moves
right-up in the region where 2’ > 0,4y’ > 0, but more flatly so. It crosses the
z-nullcline vertically, and the y-nullcline horizontally, respectively.

The time scale method completes the analysis of a singularly perturbed
system with the phase portrait of special and typical singular orbits. The
singular orbit structure is considered as the Oth order approximation of the
perturbed structure for small 0 < ¢ < 1 (see the insert discussion on “Why
Singular Orbits”).

Example 2.4.1 Consider the same competitive model of two species as
(2.6) except for the dimensional notation for the population densities X, Y

X
X/ = ’I”IX <1 — K—) — CyXY

x

Y
YI = TyY (1 — E) — CmXY
It is left as an exercise to show that with the following change of variables

and parameters

X Y .
T =— Y= s=r
K,’ K,’ Y
oKy Ky Ty
01} 9 Ox = 9 E=—
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the system is transformed into the following dimensionless form

dx
Egzx(l—x)—ayxyzzxf(x,y) Y y'<0
dy I/Gy x'<0
2~ V(L —y) oy = yg(.y).
s y'=0
The dimensionless system becomes a singu- \1<
larly perturbed system if 0 < ¢ <« 1, i.e., ' 0
species X is much more prolific than species y
Y is. Under the competitive coexistence con- =
dition that Y N /o,

x'=0 x'>0 x'=
O, 0y <1

the phase portrait of singular orbits is sketched in the figure. Notice that all
singular orbits not originated from either axis converge to the xy-equilibrium
point.

©
Comparison of Phase Plane and Time Scale Methods. The time scale
method is based on the phase plane method and compensates the latter’s
shortcoming of ignoring vector field’s magnitude. The illustration below
gives an example of this point. Figure (a) is a phase plane illustration in
which only the direction not the magnitude of a vector field is depicted.
Following the vector field, you draw an orbit circling around the equilibrium
point at the best. One cannot conclude if such an orbit converges to the
equilibrium point, or diverges from it, or stays on a cycle. However, if
we know the system is singularly perturbed like equations (2.7), then the
singular orbit structure at e = 0 looks like (b), for which all singular orbits
converge to the equilibrium point. Similarly, if we know the parameter ¢ is
not a zero singularity rather an infinity singularity that € > 1 so that x is
slow and y is fast, then the singular orbit structure at £ = oo looks like (c).
Again, all singular orbits converge to the equilibrium point.

B y 4 y
/ /
R A —~—— |
\\\ // \ . //
LK e
e \\t //
P - }
—— 7 \ e \
X X
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©
Comparison of Time Scales. The il-

lustration on the right gives a comparison

between the fast time scale ¢ and the slow o
time scale 7 as to how they may shape
the time series profiles of singular and per- ®
turbed orbits. The orbit in consideration - <

is the perturbed orbit from Fig.2.5(d) with \—a

its four fast and slow phases (1, 2, 3, 4) O(e) 0(e)

corresponding to those of Fig.2.5(c). In the s
fast time scale plot against the x variable,
the sharp rise (1) and fall (3) become in-
stantaneous jumps when € = 0 which are

referred to as phase transitions. The - <
relaxed transitions with 0 < ¢ <« 1 take

place in a t-time interval of order e, O(e), . o()
which shrink to an instantaneous moment
ase — 0.

In the slow time scale 7, however, these short transitions are slowed down
and magnified. So much so that at ¢ = 0, the magnified 7-interval becomes
infinity, and the fast orbit is stretched indefinitely to the right. It can only
be done one fast orbit a time.
©
Dynamical System Evolution to Higher Dimensions. The most im-
portant and useful feature of the time scale method is the dimensional reduc-
tion property: both fast and slow subsystems are at least one dimension less
than the full system. Hence, the method breaks the system down to lower
dimensional slow and fast subsystems, unlock their full structures, only to
build them up to construct a Oth order approximation of the full system,
which in most cases give a qualitatively accurate description of the system
for small perturbations from its singularity.

The time scale method is a reductionistic approach at its best. It allows
us to understand higher dimensional structures from their lower dimensional
components.

Exercises 2.4

1. Show that the changes of variables and parameters from Example (2.4.1)
transform the dimensional system to the dimensionless system as claimed.
(Hint: Use the chain rule of differentiation. For example,

dX dXds dx

At dsdt o tVds
Substitute this into the X-equation and simplify to get the dimensionless
counterpart. Do the same for the Y-equation.)
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2. Consider the same dimensionless competition model from Example (2.4.1).
Use the time scale method to sketch a phase portrait of singular orbits
for the following cases

(a) Competitive Tug of War: o, o, > 1.
(b) Competitive Exclusion: o, < 1 < gy,.

3. The nullclines and some information about the vector field for a system
are given in each of the diagram.

(a) Use the time scale method to sketch typical singular orbits, as-
suming z is the fast variable.

(b) Use the time scale method to sketch typical singular orbits, as-
suming y is the fast variable.

(i)

y'<0 yr=

y
x'=0 y'<o 0
\ y'>0
x'>0
t X

4. Consider the nonlinear RC' circuit with an S-shaped IV-characteristic
Iin F(Vy,1,) = 0 for the resistor g. The following singularly perturbed system
models the circuit dynamics.

X

dVe

=< =_1,-1I,,
dt g

di,

9 — F(Vo + E).

Tt (Vo + E)

Use the time scale method to sketch the singular phase portrait of the
system under the following condition:
(a) The Vo-nullcline lies below the lower knee point of the S-characteristics.
(b) The Ve-nullcline lies between the lower and upper knee points of
the S-characteristics.
(¢c) The Vee-nullcline lies above the upper knee points of the S-characteristics.
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2.5 RELAXATION OSCILLATIONS

Perhaps the most useful advantage of the time scale method over the regular
phase plane method is that it can be used to capture large limit cycles for
systems of 2-dimension or higher. A limit cycle of a system is a periodic
solution z(t) satisfying x(t + T') = x(t) for all ¢ and for a fixed " > 0. The
smallest of such positive T is called the period of the cycle. We consider two
types of limit cycles of singularly perturbed systems. For the first type, the
singular limit cycle contains saddle-node turning points only. For the second
type, the singular limit cycle contains at least one transcritical turning point.
We present them by examples. We begin with the saddle-node turning point
case because it is simpler.

SINGULAR CYCLE THROUGH SADDLE-NODE TURNING POINTS.

We use the FitzHugh-Nagumo circuit as a prototypical example. The circuit
and the nonlinear IV-characteristics are shown in the margin. The system
of equations that models the circuit dynamics is given as follows.

dVe

CW:_F(E‘FVC)_IL—L'
“ (2.11)
L
L— =Vo— RIg.
I . L

With the following change of the time variable, and introduction of a new

parameter

! c
L

t:=— =
A

the circuit equations are transformed into

Ve
dt
dly,

— = Vo — RI,.
dt C L

Here we have used the same notation ¢ for both the original time ¢ and the
new time t/L for conservation of notation.

The new parameter € captures the energy storage capability of both the
capacitor and the inductor. More specifically, from the capacitor relation
V = Q/C we see that the smaller C' is, the greater energy the capacitor
can store for the same amount of charge @). Similarly, from the inductor
relation LI’ = V we see that the larger L is, the greater potential energy
the inductor can store for the same amount of change in the current. Hence,
the magnitude of the ratio e = C'/L conveys an unambiguous interpretation:
the smaller ¢ is, the greater energy the two devices as a whole can store.

Let us now use the time scale method to analyze the circuit dynamics
treating € as a singular parameter. Recall, the phase plane method still

)

— —F(E4+Ve)—1IL— 1T
(2.12)
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\\ / \\ . , .
0 o |
V! =0 V=0
(a) (b)
Figure 2.6

applies, but with the added information on fast and slow time scale dynamics
when ¢ is either very small or very large.

To begin, Ip-nullcline is a line Vo = RIp, through the origin with a
positive slope R. The Vg-nullcline has the shape of an upside-down letter
N, which is transformed from the N-shaped I'V-characteristic I = F(V') for
the nonlinear resistor. To be precise, the Ve-nullcline is, I, = —(F (Ve +
E)+ Ly).

There are two broad cases regarding the parameter values of E and I;,.
The circuit for which the parameter combination in E and I;,, makes the I} -
nullcline, Vo = Ry, to intersect only Vo-nullcline’s middle branch between
its two extreme points is said in an excitable state. The circuit for which
the Ir-nullcline intersects either the left branch or/and the right branch of
the Veo-nullcline is said in a non-excitable state.

We consider the excitable state as shown in Fig.2.6 and leave the non-
excitable state to the Exercises. The singular phase portraits illustrate two
cases: Fig.2.6(a): 0 < ¢ <« 1 for which V¢ is the fast variable; Fig.2.6(b):
e > 1 for which Iy, is the fast variable. In case (a) all orbits converge to
a limit cycle, referred to as relaxation oscillation. In case (b) all orbits
converge to an equilibrium point. That is, in terms of its energy storage
capability, the circuit destabilizes into oscillation when its energy storage
capability is high, and stabilizes at an equilibrium state when its energy
storage capability is low.

Figure 2.7 shows some computational simulations of the circuit with

F(V)=aV(V2+bV +¢), a=2,b=-2, c=1.1
R=05, E=04, I,, = —0.6

Fig.2.7(a) compares limit cycles for two small values of €. It shows that the
smaller ¢ is the tighter the cycle hugs round the singular cycle. Fig.2.7(b)
shows the time series of both variables for one € value. Fig.2.7(c) is a bifurca-
tion diagram plot. It is generated as follows. We first discretize an ¢ interval
into N many points, {1, €2, ...,en}. Then for each i, an orbit is generated
for a T period of time using the previous the end point of e;_1’s orbit as the
initial point. We then keep only the last Ty < T period of the orbit, and find
its maximal and minimal values in the voltage V. Fig.2.7(c) is the plot of
the extremes against the parameter €. To interpret, the nonzero variation
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Range ofVC

Figure 2.7

in the minimum and maximum implies that the asymptotic dynamics of the
circuit is a limit cycle, and the lack of variation means an equilibrium point.
The plot is generated by the Matlab m.file FHNbifurcation.m.

SINGULAR CYCLE THROUGH TRANSCRITICAL TURNING POINTS.

Consider the following dimensionless predator-prey model which we will de-
rive in detail in a later section

e =z(1—2x) —

=y
, . fra (2.13)
Yy =y(6+x—5—uy).

Here x is the dimensionless population density of a prey and y is the dimen-
sionless population density of a predator. Without the predator (y = 0), the
prey grows according to the logistic model. The functional form

x
B+

is the dimensionless kill rate per-capita of y. It is referred to as Holling’s
Type II functional. Parameter § is the semi-saturation rate in the sense
that when 2 = 3 the kill rate equals 1/2, half of the dimensionless saturation
kill rate 1 = lim,_, ﬁwﬁ

The predator is a specialist in the sense that its existence depends ex-
clusively on the prey x. The dimensionless growth rate is the same as the
kill rate. Without it, it dies off at a per-capita rate & + py, where u is the
intraspecific mortality rate due to competition amongst the predator.

The time scale parameter € measures the ratio of reproduction rates of
the predator and the prey. For small ¢, the prey out produces the predator.
For large €, the predator out produces the prey. It is more intuitive to
envision scenarios of the first case. The second case, however, is not that
uncommon such as in cases of biological control, infectious diseases, and
parasitic interaction.
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Figure 2.8

NULLCLINES

The z-nullcline consists of two branches: the trivial branch z = 0, and the
nontrivial branch

y=(1-2)(8+2).

It is a parabola with = tow intercepts: © = —3, © = 1. The latter z = 1
corresponds to the predator-free carrying capacity of the prey. The parabola

has a maximal point
_(1-8 (1+p)?
(Ic;yc> - <T) T
The case with § > 1 is left as an exercise. We consider here the case with
0<p<1

for which the maximal point lies in the first quadrant relevant to population
dynamics.

Of the parabola, the branch right of the maximal point is the predator-
mediated z-carrying capacity when each y is frozen at a fixed constant be-
tween y = 0 and y = y.. The branch left of the maximal point is the predator
mediated z-survival threshold, corresponding to unstable equilibrium point
of the z-equation when y is fixed at the same constant. The intersection of
the threshold branch with the trivial branch is

(:Etuyt) = (075),

referred to as x’s threshold transcritical point.

As y increases, the threshold branch increases and the capacity branch
decreases in z (why, biologically?). They emerge at the critical point (.., y.).
Depending on the perspectives, it is a saddle-node bifurcation point of the
z-equation when y is considered as parameter. It is a saddle-node turning
point when both equations are considered as a singularly perturbed system
for 0 < ¢ < 1. Biologically, it is considered as a crash-fold point for
the reason that for y lies above the level critical y., however slightly, the x
population will crash to the extinction branch x = 0 regardless its initial
size. Whereas for y lies below it, it is possible for the prey to stabilize at its
predator mediated capacity.
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Pontryagin’s Delay of Loss of Stability (PDLS). Let z = a be a line with
0 < a < min{zy ¢, xc}. Let (a,yc) be the initial point and (x« (t), y=(t)) be the solution
of the perturbed system (2.13) through the initial point with 0 < ¢ < 1. By a phase
plane analysis, the solution must move down and left in the region 3’ < 0, 2’ < 0,
both in a decline mode. It crosses the threshold branch vertically since at which
2’ = 0. Denote the point by (z1,¥1),0 < 21 < a,yt < y1. The orbit then turns
around in z direction, as the prey z is now in a recovery mode z’ > 0, but still down
for y’ < 0. A finite time later, say T. > 0, it intersects the cross section line z = a at
a point denoted by (a,y2(¢)).

As far as the prey population is concerned, there is no net loss during this 7 period of
time, i.e. 2:(0) = z<(T:) = a, and the following expression makes this point precise:

T. 1 Te o/ y
: :_/ Te gt. X'<0
0 T 0 Te y'<0

1
0= o Inze(t)

€

This simply says that since z’/x is the per-capita growth Ve

rate of the prey, the integral represents the average per-

capita growth rate of the prey in the period of time [0, T%]. Vi

Hence, that the average per-capita rate is zero gives the ¥ x>0

explanation as to why there is no net change of the prey 2 e
population during this time. 0 a

However, there is a net decline in the predator population and that can be captured
precisely by transforming the integral above in terms of the y variable as follows,
using the facts that y’ # 0 and dt = dy/y’:

Te o y2(e) / y2(e)
0= / &dt = / Exsl dye = / Md%_
0 Te - TelYe Y1 ysg(xsv ys)

Taking the limit € — 0 on both sides, we obtain this integral equation

50,
Yp 59(078)

(2.14)

Here we have used the facts that ase — 0, zc — 0,21 — 0,y1 — y+ = 3. We have also
assumed that the limit y2(e) — yp exists, and substituted s for y. as the integration
variable. Referred to as the PDLS solution or point, y, is such a value that prey’s
accumulative per-capita rate over the growing phase y < y; (i.e., f(0,s)/(sg(0,s)) >
0) cancels it out over the declining phase y > y; (i.e., f(0,s)/(sg(0,s)) < 0).

The y-nullcline has two branches as well: the trivial one y = 0, and the
prey-supported carrying capacity
1 x
== —-4). 2.15
T (6 +x ) (215)
It is a monotone increasing function in = (why, biologically?), having a sat-
uration density as the maximal capacity

1 1-9§
lim _( : _5> S
z—oo pu \ B+ x %
Hence as a default assumption for nontriviality we assume
0<do<1

in order for the capacity to be non-negative.
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Figure 2.9

The two branches intersects at a capacity transcritical point

)
(xy,tvyy,t) - (16_—550) .

It is the a-intercept point of the y-capacity branch (2.15).

The combined configuration of the nullclines is such that the capacity
branch of the predator intersects the threshold branch of the prey. The
necessary condition for this to happen is for the y capacity transcritical
value z, ; to lie below the crash-fold point z.:

po_1-p _

KA

5 = e
This is because the y capacity increases with increasing x, and as a result it
will not intersect the z-threshold branch if its minimal point (x ¢, 0) already
lies above the right most point, (2, y.), of the threshold branch. Given this
necessary condition, a sufficient condition is for g to be small. In fact,
when p = 0, the necessary condition is also sufficient because the y-capacity
nullcline degenerates into a vertical line = x,,, going through the threshold
branch of the prey.

Hence, to summarize the nullcline configuration for the analysis below, we
assume
1-8

0
Tyt = % < 5 = e and p > 0 sufficient small.

SINGULAR CYCLE

Figure 2.8 illustrates the two limiting cases:

(a) x is fast, y is slow when 0 < ¢ < 1;

(b) « is slow, y is fast when € > 1.
In (a), all singular orbits from the first quadrant converge to a limit cycle of
relaxation oscillation which contains two fast orbits, initiating respectively at
the crash-fold point (., y.) and the PDLS point (0,y,). In (b), all singular
orbits from the first quadrant converge to the coexisting zy-equilibrium state.
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Figure 2.9 are computational simulations of the system. They are gener-

ated for varying ¢ values but fixed values of the other parameters:
=02 6=02 p=1.

Fig.2.9(a) compares limit cycles for two different £. The smaller ¢ is, the
tighter the cycle is around the singular limit. Fig.2.9(b) is the time series plot
for one parameter value of €. Notice that the prey population periodically
dips precariously too low. Fig.2.9(c) is a bifurcation diagram with ¢ being
the bifurcation parameter. It is generated in the same way as the bifurcation
diagram for the FitzHugh-Nagumo circuit above. Again, a nonzero variation
between the minimum and maximum implies a limit cycle, and the lack of
a variation means an equilibrium point. The Matlab m.file that generates
the plot is PPbifurcation.m. Notice that the PDLS phenomenon is clearly
evident. That is, the rebounding (minimum) density of the predator lies
below the transcritical bifurcation value y;. In contrast, the peak density is
near the saddle-node bifurcation value y..

Exercises 2.5

1. Consider the equations (2.11) for the FitzHugh-Hagumo circuit. Assume
the Ip-nullcline intersects the V-nullcline only the latter’s branch left of
the local minimum point. Sketch a phase portrait of singular orbits for
the two singular perturbation cases: (a) 0 <e < 1, (b) e > 1.

2. Consider the dimensionless predator-prey system (2.13) when 8 > 1,0 <
0 <1 and z,, < 1. Sketch a phase portrait of singular orbits for the two
singular perturbation cases: (a) 0 <e < 1, (b) e > 1.

3. Consider the dimensionless predator-prey system (2.13). In the case that
0 < <1,0<d<1andpu =0, find the exact formula for the xy-
equilibrium point.

4. The derivation of the PDLS point y, from the equation (2.14) does not
depends on the initial point y.. That is, one can start at any initial
point (a,yo) with yo > vy, and still derive the same form of the equation
below for the corresponding PDLS point y,, which now is a function of

Yo, Yp = Yp(Yo):
/yo f10.5) ds = 0.
Y.

s9(0, s)
Show that y,(yo) is a decreasing function of yo, and that limy,_ y, = 0.
5. Show that the singular limit cycle of the predator-prey system (2.13) in
fact contains the crash-fold point (z.,y.) at ¢ = 0. (Hint: Modify the
derivation of the PDLS point y,. More specifically, move the line z = a
closer to the crash-fold point so that a < z.. Instead of starting at
the initial point (a,y.), start the orbit, (z-(t),y-(t)), at (a,yo) for any
Yo < Ye. According the phase plane analysis, the orbit will cross the z-
capacity nullcline at a point (z1(g),y1(¢)), and then hit the line 2 = a at
a point, (a,y2(g)), with y2(e) > y.. Then show lim. ¢ y2(¢) = ye.)
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2.6 LINEARIZATION

The phase line, phase plane, and time scale methods are both geometrical
and global in nature. In this section however we turn our attention to a
method for the stability of equilibrium solutions that is analytical and local
instead. It is based on Taylor’s expansion of functions and the stability
analysis for linear equations from Sec.2.1.

The basic idea can be fixed by considering autonomous equations of 1
variable

¥ = f(x).

The dynamics of the equation is captured completely by the phase line
method as shown by example below.

=/ p)(x-p)=0

\ x'=f"(a)(x-a)

In particular, the stability of all equilibrium points can be classified qual-
itatively. Therefore, there is little to gain geometrically. However, if we
want to know how fast solutions converge to equilibrium a, for example,
the phase line method is ineffective. Since such a question only concerns a
small interval of the equilibrium point a, we can simply ignore the vector
field f outside the interval. If we keep zooming in at a, then the graph of
the equation 2’ = f(z) would look like a line—the tangent line of f(z) at
a: ' = f(a) + f'(a)(x —a) = f'(a)(x — a) since f(a) = 0. In other words,
the original equation, which is usually nonlinear, is approximated to the first
order by the following linear equation

a' = f'(a)(x —a)

which is called the linearization of the original equation at equilibrium a.

Property of Hyperbolicity: If f(q), f'(q) # 0, then all essential infor-
mation, geometrical and analytical, about the nonlinear equation near the
equilibrium point ¢ are preserved.

Take the case in the illustration that f/'(a) < 0 . Geometrically, f(z) > 0
if and only if a—d < = < a for a small 6 > 0. Equivalently, f'(a)(x—a) > 0if
and only if < a for the linearization. Therefore, the phase line structures
of both the nonlinear equation and its linearization near a is one of the
same. Most important of all, no small perturbations can change the overall
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Higher Order Approximations. The idea of approximation prevails always. Take
the case in illustration as an example that is about the equilibrium point x = d.
The linearization equation ' = 0 would predict that all solutions near = = d are
equilibrium solutions which clearly is false for the original equation. However, we can
consider the approximation that is one order higher than the tangent line approxi-
mation of the vector field. More precisely, at the equilibrium point d at which the
nonlinear vector field f has a quadratic-like tangency to the z-axis, the second order
Taylor’s approximation of the vector field is
f"(d) f"(d)

f@) % f(d) + 1 (@)@ —d) + 5w =) = P @ =) £ 0

assuming f(d) = f’(d) =0 but f”(d) # 0. Thus the following equation

1 (d)
’ 2
i = === =al

La-a
is an approximation of the nonlinear equation near x = d. It is a good approximation
for two reasons. Qualitatively it gives the same phase line structure near the point
as the original equation. Analytically, one can first check or derive by the method
of separation of variables the following solution to the initial value problem with
2(0) = xo of the approximating equation:
xo —d "(d
07, with A = 7 )
1—Azo —d)t 2

() = d +

Secondly, one can show that the difference between the exact soluiton, ¢(t,zo), and
the approximate solution is of a smaller order than 1/|¢| as ¢t — Foo.
Similarly, for x = ¢ at which f has a cubic-like tangency to the z-axis, the third order
Taylor’s approximation is used to derive the approximating equation

2 = f”:;'(c) (.’E _ 6)3,

assuming f(c) = f'(c) = f”(c) = 0 but f"’(c) # 0. Again, one can use it to analyze
the original equation near x = ¢ both geometrically and analytically.

To summarize, linearization is simply a special but important case in the approxi-
mation theory of differential equations. All degenerate cases, i.e. f(q) = f/(¢) = 0,
are only secondary and exceptions to the hyperbolicity (i.e. f’(g) # 0). Unlike the
hyperbolicity, they can be removed by targeted perturbations to the equations.

qualitative structures of the equilibrium point, the essence of hyperbolicity
by definition.

If

Analytically, we can solve the linearization equation explicitly as follows.
we let © = x — a as the new variable, then

W = (z—a) =’ = f(a)(z —a) = f(a)u.

That is, the linearization equation is transformed into

u = \u

where A = f/(a) is a constant. Its general solution is given by

u(t) = CeM > z(t) = a+ Cel @t

Hence, for any initial point o from the interval (a — d,a + ), the solution

wi

th 2(0) = z¢ is given as
2(t) = a + (zg — a)e! @
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which converges to a exponentially fast. It is a theoretical fact that this solu-
tion to the linearization approximates the solution to the original equation.
The precise result can be stated as follows.

There is a sufficiently small § > 0 so that for any initial point
xo from the interval of I = (a — d,a + §), the solution denoted
by ¢(t,x0) to initial value problem x’ = f(x),z(0) = z¢ stays in
I for allt > 0 and the difference between the exvact solution and
the linear approximation

[6(t,30) — [a + (w0 — a)e! @]

converges to zero at a rate faster than the exponential decay
el (@t g5t — +o0.

©

The case in illustration that f/(b) > 0 is the same except that the exact
and the approximate solution approach each other backward in time and at
a rate faster than the exponential e/ (Mt as ¢t — —co. To be precise,

lim |p(t, 20) — [b+ (20 — b)e! ®)]|

t——o0 ef,(b)t

=0.

The linearization fails if f* = 0 at the equilibrium point, such as the cases
in illustration for x = ¢ and & = d. The linearization 2’ = 0 is inconclusive
about the dynamics of the nonlinear equation near these points. In such a
case, higher order approximations of the vector field apply, see discussion
from the inserted box.

We now extend the linearization method to 2-dimensional systems of equa-

tions
.T/
yl

Assume (z,y) = (p, ¢) is an equilibrium point, i.e.,

f(@) (2.16)
g

(z,y).

f(p,q9) =g(p,q) =0,

and we want know the local stability of the equilibrium point as well as local
solution structure of the equation near the point. The principle rationale
of approximation is the same: solutions of the original equations are deter-
mined by the vector field (f,g) their equations define, and as a result, an
approximating vector field of the exact vector field should give approximat-
ing solutions to the exact solutions. This approach is particularly useful near
equilibrium points. The approximation is again based on Taylor’s approxi-
mation of functions.
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As the method goes, we approximate the vector field at the equilibrium
point (p, q) by their tangent planes respectively as

flz,y) = f(p,q) + %(p,q)(z —p)+ g—z(p,q)(y -q)

gf (p,q)(x —p) + %(PMJ)@ —q)

9(z,y) ~ g(p,q) + gi(p,q)(x—pHg—z(p,q)(y—q)

_0g dg
= a—(p#z)( p)+@(p,q)(y—q)-
The linear system of equations
aof aof
/ e — — —_— p—
r = ax(p,q)(ﬂﬁ p) + ay(p,q)(y q)

y = %(p,q)(w -p)+ g—z(p,q)(y —q).

is called the linearization of the original system at the equilibrium point

(p. q)-
To streamline notations, we use
of of
b = —
a= 5 (pa), Dy (»,q)

dg dg
= 5P, 9 d = 5 P, )
c=o (pa) By (p,q)
u=z—p, v=y-—g
we rewrite the linearization as
u = au + bv
(2.17)
!
v = cu + dv.

The solution structure of this linear system and that of the original system
near the equilibrium point (p,¢) is now a matter of interpretation between
the two (2.16, 2.17).

Geometrical Properties of Linearization

First of all, the equilibrium point (p,q) of the original corresponds to the
trivial solution (0, 0) of the linearization. As a result, the origin of the (u,v)
coordinate system is located at (p,q) on the (z,y) coordinate. Moreover,
the u-axis is simply the translation of the z-axis to the point (p,¢), and the
same for the v-axis and y-axis parallel.

More importantly, the u-nullcline

u’:au+bU=%(p,q)(x—p)+%(P=Q)(y—Q) =0

is the precisely the tangent line of the z-nullcline

f(a:,y):()
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at the equilibrium point (p,¢). The most important of all is the property
that both equations have the same sign polarity near the equilibrium point.
This means that if the left side of the a-nullcline f(x,y) = 0 is where 2’ > 0
locally near the equilibrium point, then it is the left side of the u-nullcline
that is where v/ > 0. This is simply due to the fact that the u-equation is
the tangent plane approximation of the z-equation when both are viewed as
surfaces, see the illustration below.

| x=re

u'=au+bv

It is easy to see that v’ fails to capture the sign of 2’ near the equilibrium
point if ' = 0, that is, fz(p,q) = fy(p,q) = 0. In such a case, higher order
approximation is required, which we will not pursue here.

The exactly same result and explanation apply to the y-equation and its
linearization v/ = cu + dv.

Let

J(pvq)_lg—ﬁ(p,q) g—i(p,Q)]_{a b]

e [e)

ox(p.a) 3L(p,q) c d

which is referred to as the Jacobian of the vector field at point (p,q). By
definition, the equilibrium point (p,q) is said to be hyperbolic if J(p,q)
does not have an eigenvalue whose real part is zero. (The real part of a real
number is the real number itself.)

Topological Conjugacy: The geometrical structures of the nonlinear sys-
tem and its linearization near a hyperbolic equilibrium point are the same
(which has its technical definition called topological conjugacy). In partic-
ular, the equilibrium point is stable for both systems or unstable for both
systems.

Stability of Hyperbolic Equilibrium Points

The linearized system (2.17) can be written in a matrix form as

(7)),

From Sec.2.1 we know that the stability of its equilibrium point is determined
by the eigenvalues of the coefficient matrix J(p,q). Hence, we have the
following result

Stability Criteria: A hyperbolic equilibrium point (p, ¢) of the nonlinear
system (2.16) is
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® stable if the real parts of all eigenvalues of the Jacobian matrix J(p, q)
are negative.

¢ unstable if the real part of one eigenvalue of the Jacobian matrix J(p, q)
is positive.

Example 2.6.1 Use linearization to determine the stability of the equilib-
rium point (0,0) of the FitzHugh-Nagumo system

{ ¥ =—x(z—a)(zr—-1)—y
y =2z —y,

where 0 < a < 1.

Solution: Let f(z,y) = —z(x —a)(x — 1) —y, g(x,y) =2z —y. Then

o= o BN 1= ]

The linearization of the system at (0,0) is
u = —au—wv
{ v =2u —w.
The characteristic equation is

|J(0,0) = M| = A+ (1 +a)\ + (a +2) = 0.

The eigenvalues are

. —(1+a)+/(1+a)2—4(a+2)
1,2 = 5 .
Since (1+a)? —4(a+2) = (1 —a)? —8 < 0 when 0 < a < 1, the eigenvalues
are complex with real part —(1 4 a)/2 < 0. Hence, the equilibrium point is
stable for all 0 < a < 1.

©

The example above is one of such a case that it is not too hard to find the
equilibrium point and the Jacobian explicitly and the linearization method
is then used directly. The following example is quite different. Finding the
equilibrium and the Jacobian proves to be too tedious and too complex if
not impossible when there is a simpler alternative. The key is to make use
of geometrical properties of the linearization.

Example 2.6.2 Counsider the dimensionless predator-prey model Eq.(2.13),
which is recalled as follows.

er' =z(1—x) — y

f+x

, T
= —0— .
Y y(ﬁ‘i‘ﬂf Ny)
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Consider also the following conditions

) 1—
B < 1-5 =z, and p > 0 sufficient small.
1-6 2
so that if x is fast (0 < ¢ < 1) the system has a singular attracting limit
cycle and if z is slow (¢ > 1) the system has a singular stable equilibrium.
(See Sec.2.5.) Use the method of linearization to determine how the stability

of the zy-equilibrium point changes with the singular parameter €.

Lyt =

Solution: Let
eu’ = au + b
v =cu+dv

be the linearization, where a = 9f/0x evalu-
ated at an/the xy-equilibrium point and so on.
We already know that the u-nullcine au+bv =
0 is the tangent line to the z-nullcline at the
equilibrium point. Since the tangent line has
a positive slope we have ab < 0. Since we also
know that v’ > 0 for (u,v) lies below the tangent line, we must have b < 0
(why?). Hence we must have a > 0 and b < 0 as a result. Similarly, ed < 0
because the v-nullcline has a positive slope. Again using the fact that v' < 0
for points above it, we conclude that ¢ > 0,d < 0. Notice also that the slop
of the v-nullcline, —c¢/d, is greater than the slope of the u-nullcline, —a/b.
Thus,

—c/d > —a/b <= ad—bec > 0. (2.18)

The last inequality is obtained using the fact that b < 0,d < 0
We now consider the eigenvalues of the Jacobian at the equilibrium point.
The characteristic equation is

a _ b d—2b
det| €7 2 S ) W L ;) Wi
c d— X\ € €
where for simpler notation we used

ad — be

B=21d C=
£

Because a > 0,d < 0, B>0ife < 1 and B < 0if € > 1. Also, because of
(2.18), C >0and C ~ +oo if e <« 1 and C ~ 0 if ¢ > 1. The eigenvalues
are

Ny B++B?2—-4C
2= 5
‘We now see that

® Fore > 1, B~d<0and C ~ 0%, implying \; > < 0. Hence the
xy-equilibrium point is stable.



REUNotes08-ODEs May 30, 2008

56 CHAPTER 2

® For ¢ < 1, we have B ~ +oo, C ~ 400, and B? — 4C > 0 but
VB2 —4C < B. Hence, the xy-equilibrium point is a source, thus

unstable.
[ ]

In conclusion, as ¢ changes from very small to very large, the equilibrium
point changes from being unstable to stable. This is consistent with the
bifurcation plot of Fig.2.9(c) from the previous section.

©

Exercises 2.6

1. Some information of the linearization of a system of equations at an equi-
librium point is given in each (a) and (b). Use the information to deter-
mine the stability of the equilibrium point.

(a)

2. Verify that x = 2 is an equilibrium solution of each equation. Use lin-
earization to determine its stability.

() 2/ =23 — 2% - 22

(ii) 2’ = 3z — 2 — 13_:796

3. Consider the system of two competing species
{ ¥ =1z(3 -3z —y)
v =y2-y—x)

Find the equilibrium point that is inside the first quadrant, and use lin-
earization to determine its stability.

4. Find the equilibrium points of the system, and use linearization to deter-
mine their stability.

y =x—uy.

{ o =2z(1—2%) —y

5. Use linearization method to prove that the equilibrium point of Exercise
1(a) above is always stable.
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6. Use linearization method to prove that the coexisting equilibrium point
of the model of two competing species Eq.(2.6) is always a saddle if none
of the species is competitive.




