Name:

Score: _____

Instructions: You must show supporting work to receive full and partial credits. No text book, notes, formula sheets allowed.

1(20pts) (a) Find $\left(\frac{df}{ds}\right)_{\mathbf{n}, P_0}$ where f(x, y) = 2xy, $P_0 = (2, -1)$ and \mathbf{n} is the direction of vector $\langle -12, 5 \rangle$.

- (b) Find the direction at which the function z = f(x, y) increases most rapidly at the point P_0 .
- (c) Find a point (x, y) at which the minimal rate of change of the function z = f(x, y) is -2.

2(10pts) (a) It is given that z can be solved as a function of x, y from the equation $yz^3 - 2xz - e^{xy} = 1$ at the point (1, 0, -1). Use implicit differentiation to find $\frac{\partial z}{\partial x}(1, 0)$.

(b) Find an equation for the tangent plane at the point (1,0,-1) to the surface $yz^3-2xz-e^{xy}=1$.

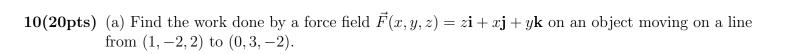
6(15pts) Find the limit if exists, or use the 2-path rule to show it does not.

(a)
$$\lim_{(x,y)\to(1,0)} \frac{x+2y-x^2-2xy}{x^2-xy-x+y}$$

(b)
$$\lim_{(x,y)\to(0,2)} \frac{y+x-2}{xy}$$

7(15pts) Use the Lagrange multiplier method to find the shortest distance from the point (1, 4, 1) to the cylindrical paraboloid, $z = \frac{1}{2}y^2$.

6(13pts)	hour. (a) Find the velocity when the rocket reaches its maximal height.
	(b) Find the time when the rocket reaches its maximal height.
	(c) Find the maximal height.
$9(15 \mathrm{pts})$	A particle is moving along a curve $C: \vec{r}(t) = \langle t^2, t \sin(\pi t), \sqrt{3t+1} \rangle$. (a) Find a parameter equation for the tangent line to the path when $t=1$.
	(b) Find an equation of the plane that is perpendicular to the path at the point when $t=1$.
	(c) Find the acceleration $\vec{r}''(1)$.

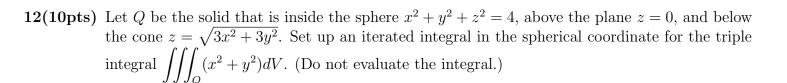


(b) Let C be the close path consisting of the interval [-2,2] on the x-axis and the upper semi-circle $x^2 + y^2 = 4$. Find the line integral $\oint_C (2-3x)dx + y^2dy$.

11(20pts) (a) Use the Component Test to show that the force field $\vec{F}(x,y) = \langle 2xy + 2, x^2 - 1 \rangle$ is a conservative vector field.

(b) Find a potential function $\phi(x,y)$ for \vec{F} .

(c) Find the work done by the force field \vec{F} on a particle moving from point (0,2) to (3,1) along the curve $C: x+y^2=4$.



13(10pts) Let Q be the solid in the first octant that is bounded by the surface $x + y + z^2 = 9$. Set up an iterated integral for $\iiint_Q f(x,y,z)dV$ in the order of dxdydz.

14(15pts) Let $\vec{F} = \langle x, y, z \rangle$ and S be the paraboloid $z = 4 - x^2 - y^2$ above the xy-plane, with downward orientation. Set up an iterated integral in polar coordinate for the flux of \vec{F} through S, and then find the flux.