Print Your Name Legibly: _____

_____ Score: _____

Instructions: You must show supporting work to receive full and partial credits. No textbook, notes, cheat sheets, calculators allowed.

1(15pts) (a) Find a parameterized equation for the right half of the circle, $x^2 + y^2 = 4$, from (0, -2) to (0, 2).

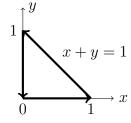
(b) Find the flux of the vector field $\vec{F} = \vec{i} + 2\vec{j} + 3\vec{k}$ through a square of area 2 on the xz-plane, oriented in the direction of the y-axis.

(c) For $\vec{F}(x, y, z) = (x^2 + y)\vec{i} + (y + 2z)\vec{j} + 3x^2\vec{k}$, find the divergence of $\vec{F}(x, y, z)$ at the point (1, 2, 0).

2(15pts) Let $\vec{F}(x,y,z) = z^2\vec{i} + x\vec{j} + y\vec{k}$. Set up an integral in one variable for the line integral $\int_C \vec{F}(\vec{r}) \cdot d\vec{r}$ along the line segment C from (1,1,1) to (1,2,0). **Do not evaluate the integral.**

3(20pts) Let $\vec{F}(x,y,z) = z\vec{i} + 2\vec{j} + 3\vec{k}$. Set up an iterated integral for the flux $\int_S \vec{F}(\vec{r}) \cdot d\vec{A}$ of \vec{F} through the paraboloid $S: z = x^2 + y^2$, oriented upward, for (x,y) from the quarter disk $D: x \ge 0$, $y \ge 0, x^2 + y^2 \le 1$. **Do not evaluate the integral.**

4(15pts) Use Green's Theorem to find the line integral of the vector field $\vec{F}(x,y) = \langle e^{x^2} - 2y, x \rangle$ around the triangle with vertexes (0,0), (1,0), (0,1).



5(20pts) (a) Use the curl test to show this vector field $\vec{F} = \langle 2xy + 1, x^2 + 2 \rangle$ is conservative.

(b) Find a potential function f for \vec{F} .

(c) Find the value of the line integral of the vector field from (1,0) to (0,1) on the line through the points.

6(15pts) Use the Divergence Theorem to find the flux of the vector field $\vec{F}(x,y,z) = (y\vec{i} + z\vec{j} + (x + y + 2z)\vec{k}$ through the surface of the solid bounded by coordinate planes x = 0, y = 0, z = 0, and the sphere $x^2 + y^2 + z^2 = 4$ as shown, oriented outwards. (You can use the formula for the volume of a ball of radius R: $V = \frac{4}{3}\pi R^3$.)

