Print Your Name Legibly:

Score: _____

Instructions: You must show supporting work to receive full and partial credits. No textbook, notes, cheat sheets, calculators allowed.

1(12pts) Given three points P = (1, 0, 2), Q = (0, 1, 2), R = (1, 1, 1), find the following.

- (a) The displacement vectors \vec{PQ} and \vec{PR} .
- (b) The angle between the vectors.

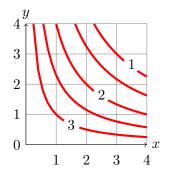
- **2(12pts)** For two vectors $\vec{u} = \langle 1, 0, 1 \rangle$, $\vec{v} = \langle 1, -1, 0 \rangle$,
 - (a) Find a vector perpendicular to both vectors.

(b) Find the projection of \vec{u} , $\vec{u}_{\text{parallel}}$, in the direction of \vec{v} .

3(10pts) For $\lim_{(x,y)\to(0,0)} \frac{x+xy}{2x+y^2}$, find the limit if it exists. If the limit does not exist, explain why not.

4(15pts) (a) For function $w = f(x, y, z) = -y^2 + xy + 2z$, find its directional derivative at (0, 1, -5) in the direction of $\vec{i} + 2\vec{j} - 2\vec{k}$.

(b) The figure below shows the level curves of a two-variable function z = f(x, y). At the point (2, 2) draw a vector representing the gradient $\nabla f(2, 2)$. Explain how you know the direction and the length of the vector.



5(12pts) Find an equation of the tangent plane to the surface defined by the equation $x^3 + y^2 + z = 4$ at point (1, 2, -1).

6(12pts) For function $f(x,y) = xe^{xy}$ find $f_{xy}(x,y)$.

7(12pts) Let z = f(x,y) = 2x + y. Find $\frac{\partial z}{\partial s}$ if x = g(s,t) with $\frac{\partial x}{\partial s} = s + t$ and y = h(s,t) with $\frac{\partial y}{\partial s} = 2st$. (Simplification is not needed.)

8(15pts) For function $z = f(x, y) = \frac{x}{1+y}$.

(a) Find the Taylor polynomial of degree 1 for f(x,y) near (1,0).

(b) You are given these values $f_{xx}(1,0) = 0$, $f_{xy}(1,0) = -1$, $f_{yy}(1,0) = 2$, find the Taylor polynomial of degree 2 for f(x,y) near (1,0).