Print Your Name Legibly: ____

Score: _____

Instructions: You must show supporting work to receive full and partial credits. No textbook, notes, cheat sheets, calculators allowed.

1(12pts) Given three points P = (1, 0, 2), Q = (0, 1, 2), R = (1, 1, 1), find the following.

- (a) The displacement vectors \vec{PQ} and \vec{PR} .
- (b) A vector perpendicular to the plane containing these points.

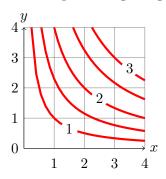
- **2(12pts)** For two vectors $\vec{u} = \langle 1, 0, 1 \rangle$, $\vec{v} = \langle 1, -1, 0 \rangle$,
 - (a) Find the angle between them.

(b) Find the projection of \vec{u} , $\vec{u}_{\text{parallel}}$, in the direction of \vec{v} .

3(10pts) For $\lim_{(x,y)\to(0,0)} \frac{x+y^2}{2x+y^2}$, find the limit if it exists. If the limit does not exist, explain why not.

4(15pts) (a) For function $w = f(x, y, z) = x^2 + 2xy - z$, find its directional derivative at (1, 0, -5) in the direction of $2\vec{i} - 2\vec{j} + \vec{k}$.

(b) The figure below shows the level curves of a two-variable function z = f(x, y). At the point (1, 1) draw a vector representing the gradient $\nabla f(1, 1)$. Explain how you know the direction and the length of the vector.



5(12pts) Find an equation of the tangent plane to the surface defined by the equation $x + y^2 + z^3 = 2$ at point (2, 1, -1).

6(12pts) For function
$$f(x,y) = \frac{xy}{1+y}$$
 find $f_{xy}(x,y)$.

7(12pts) For a function z = f(x, y), you are given its partial derivatives:

$$\frac{\partial f(x,y)}{\partial x} = \frac{x}{\sqrt{x^2 + y^2}}, \quad \frac{\partial f(x,y)}{\partial y} = \frac{y}{\sqrt{x^2 + y^2}}.$$

Find $\frac{\partial z}{\partial u}$ if in addition x = g(u, v) = u + v, y = h(u, v) = 2uv. (Simplification is not needed.)

8(15pts) For function $z = f(x, y) = xe^{xy}$.

(a) Find the Taylor polynomial of degree 1 for f(x, y) near (1, 0).

(b) You are given these values $f_{xx}(1,0) = 0$, $f_{xy}(1,0) = 2$, $f_{yy}(1,0) = 1$, find the Taylor polynomial of degree 2 for f(x,y) near (1,0).