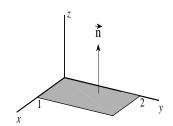
Print Your Name Legibly: __


Score

Instructions: You must show supporting work to receive full and partial credits. No calculator, textbook, lecture notes, or formula sheets are allowed.

1(20pts) A constant vector field $\vec{F} = \vec{i} + 2\vec{j} + 3\vec{k}$ is given. Find the following:

(a) The line integral of the vector field along the straight line segment from (1,0,1) to (1,1,0).

(b) The flux of the vector field through the rectangle as shown.

2(15pts) Find the value of the line integral of the vector field $\vec{F}(x,y,z) = x\vec{i} + y\vec{j} + z\vec{k}$ along the circle $x^2 + y^2 = 1$, z = 0 from (1,0,0) to (0,1,0), going counterclockwise when looking down from the z-axis.

(a) Use the curl test to show this vector field $\vec{F}(x,y) = \langle \sin(y) - 1, x \cos(y) + 1 \rangle$ is conservative, i.e. path-
independent.

(b) Show work to find a potential function f for \vec{F} .

(c) Find the value of the line integral of the vector field from (1,0) to (0,2) on the ellipse $x^2 + y^2/2 = 1$.

6(15pts) Use the Divergence Theorem to find the value of the flux for the vector field $\vec{F}(x,y,z) = (z+y)\vec{i} + (x+z)\vec{j} + (z+y)\vec{k}$ through the surface of the cylinder $x^2 + y^2 \le 4$, $0 \le z \le 1$ from inside out.