Name: _____

Score: ___

Instructions: You must show supporting work to receive full and partial credits. No text book, notes, formula sheets allowed.

1(12pts) Given two points P = (1,0,2), Q = (0,1,2), find the following.

- (a) The distance between them.
- (b) The unit vector from P to Q.

2(12pts) For two vectors $\vec{u} = \langle 1, 2, 0 \rangle$, $\vec{v} = \langle 1, 1, 1 \rangle$, find the projection of \vec{u} , $\vec{u}_{\text{parallel}}$, in the direction of \vec{v} .

3(10pts) For $\lim_{(x,y)\to(1,0)} \frac{y}{x+y-1}$, find the limit if exists. If the limit does not exist, explain why not.

7(12pts) For a function z = f(x, y), you are given its partial derivatives:

$$\frac{\partial f(x,y)}{\partial x} = \frac{y}{(x+2y)^2}, \quad \frac{\partial f(x,y)}{\partial y} = \frac{-x}{(x+2y)^2}.$$

Find $\frac{\partial z}{\partial u}$ if in addition $x = u^2 + v^2$, y = uv.

8(15pts) For function $z = f(x, y) = xe^{2xy}$.

(a) Find the linear Taylor polynomial of f about (1,0).

(b) Find the 2nd partial derivative functions f_{xx} , f_{xy} , f_{yy} .

(c) Find the quadratic Taylor polynomial of f about (1,0).