Name:	Score:		
Instructions: You must show supporting	g work to receive full a	and partial credits.	No text book,
notes, formula sheets allowed.			

1(16pts) Find all critical points of $z = f(x, y) = 4xy - x^4 - \frac{1}{2}y^2$, and use the 2nd derivative test to classify them as local minimum, local maximum, saddle, or none of the above.

2(8pts) Some level curves of a function z = f(x, y) and a curve g(x, y) = c are sketched in the figure below.

(a) Locate approximately and label all points at which $\nabla f(x,y) = \lambda \nabla g(x,y)$.

(b) Locate approximately and label the constraint maximum point and the constraint minimum point for f subject to g(x, y) = c.

- **3(16pts)** Consider an iterated double integral $\int_0^4 \int_{\sqrt{y}}^2 \sqrt{1+x^3} \, dx \, dy$.
 - (a) Sketch the region of the integral.

(b) Switch the order of integral.

(c) Evaluate the integral from (b).

(b) Set up the iterated integral in the order of dxdydz for a triple integral $\int_G f(x, y, z)dV$.

5(8pts) Some level curves of a function z = f(x, y) are as shown, and consider the double integral $I = \int_1^4 \int_3^5 f(x, y) dy dx$. Find an underestimate for the integral with $\Delta x = 1$ and $\Delta y = 2$.

6(16pts) Use the Lagrange multiplier method to find the maximum and minimum of the function w = f(x, y, z) = x + 2y + 3z with (x, y, z) satisfies $x^2 + y^2 + z^2 = 14$.

(Page 3 ... The End)