Math 208 Summer II 2005 Exam 2

N	Δ	Λ	/	F
\perp_{N}	А	.IV	1	L

1. (5 pts) Find all second partial derivatives of $f(x,y) = x^2y^3 + e^{2x}\sin y$

- 2. Let z = f(x(t), y(t)) be a composition of functions.
 - (a) (5 pts) Express $\frac{dz}{dt}$ using the chain rule.

(b) (5 pts) If $z = 1 - x^2 - y^2$, where $x = \cos t$ and $y = 1 + \sin t$, then use part (a) to determine $\frac{dz}{dt}$.

3. (a) (5 pts) Find the magnitude of the steepest slope on the surface $z=x^2+2y$ at the point (3,2,11).

(b) (5 pts) For the same surface, find the directional derivative in the direction $\langle x, y \rangle = \langle \frac{4}{5}, \frac{3}{5} \rangle$.

4. (5 pts) Find the linear approximation of $z = f(x, y) = x^2 + y^2$ at (x, y) = (2, 3). Check how close the approximation is at (x, y) = (2.01, 3.02).

5. (6 pts) A cardboard box for mailing is x by y inches. Use Lagrange multipliers to find its maximum volume if the Postal Service requires that length plus girth (=y+4x) not exceed 84 inches.

6. (7 pts) Find the critical point of $f(x,y) = x^2 - xy + y$, and use the second derivative test to identify whether it is a local maximum, local minimum, or saddle point.

7. (7 pts) Determine the volume of the solid region bounded by the surfaces $z = 4 - y^2$, x = y, and the coordinate planes.