> Exam 4
> Show your work. Justify your conclusions.
[10] 1. Let R be the region enclosed by the curves $y=4-x^{2}$ and $y=3 x$. Find the volume of the region bounded below by R and above by the plane $z=x+4$.
2. Let $f(x, y)$ be a continuous function, and R the region bounded by the curves $y=x^{2}$ and $y=x+2$.
[8] a. Write the double integral of f over R as an iterated integral (or sum of iterated integrals) with order of integration $d x d y$.
[4] \mathbf{b}. Write the double integral of f over R as an iterated integral (or sum of iterated integrals) with order of integration $d y d x$.
[6] 3. Change the Cartesian integral $\int_{0}^{6} \int_{0}^{y} x d x d y$ into an equivalent polar integral. Then evaluate the integral.
4. Let D be the region enclosed by the paraboloids $z=x^{2}+y^{2}$ and $z=8-x^{2}-y^{2}$.
[6] a. Write out the triple iterated integral for the volume of D with order of integration $d z d y d x$.
[4] b. Change the order of integration to $d x d y d z$.
[6] 5. Let D be as in the previous problem. Set up but do not evaluate the integral of $f(x, y, z)=x^{2}+y^{2}-z$ over D in cylindrical coordinates.
[6] 6. Let D be the region bounded by the surfaces $x^{2}+y^{2}+z^{2}=4, z=0$ and $z=1$. Set up but do not evaluate an integral for the volume of D in spherical coordinates.

