Math 208, Summer 2007, Exam 3
Show your work. Justify your conclusions.
[6] 1. Let $w=f(x, y, z), x=x(s, t), y=y(s)$ and $z=z(t)$. Write out, with correct derivative notation, the chain rule expressions for w_{s} and w_{t}.
[4] 2. Suppose that the function $f(u, v)$ satisfies Laplace's equation

$$
f_{u u}+f_{v v}=0 .
$$

Set

$$
u=\frac{x^{2}-y^{2}}{2}, \quad v=x y \quad \text { and } \quad w(x, y)=f(u(x, y), v(x, y))
$$

Show that w also satisfies Laplace's equation:

$$
w_{x x}+w_{y y}=0
$$

3. Let $z=f(x, y)=x^{2} /(1+y)$.
[6] a. Compute the linear approximation to f at $(2,1)$.
[4] b. Use the differential to approximate $f(2.02, .96)-f(2,1)$.
4. Let $g(x, y, z)=x y+(1 / z)$.
[6] a. Find the derivative of g at $(2,1,1)$ in the direction $\vec{v}=\langle 1,0,-1\rangle$.
[4] b. In which direction is g increasing most rapidly at the point $(2,1,1)$? What is the derivative of g at $(2,1,1)$ in this direction?
[4] 5. Find a vector normal to the surface $x^{3}+x z+y^{2}+z^{2}=4$ at the point $(1,-1,1)$.
5. Let $f(x, y)=2 x^{2}-y^{3}-2 x y$.
[4] a. Find the critical points of f.
[4] b. Classify the critical points. (Local maximum, local minimum or saddle point?)
[8] 7. Use the method of Lagrange multipliers to find the maximum and minimum values of $f(x, y)=e^{2 x+y}$ subject to the constraint $x^{2}+y^{2}=5$.
