Math 208, Summer 2007, Exam 2
Show your work. Justify your conclusions.
[6] 1. Find the equation of the plane passing through the point $P=(1,2-1)$ parallel to the plane $3 x+y+2 z=4$.
2. At time $t=0$, a projectile is fired from the origin with speed $400 \mathrm{~m} / \mathrm{sec}$, at an angle of $\pi / 3$ radians.
[5] a. Find the vector function $\vec{r}(t)$ that traces the projectile's path.
[2] b. Compute the impact time t^{*}.
[1] c. Write down but do not evaluate an integral for the arc length of the trajectory.
[4] 3. Sketch the level curves of the function $f(x, y)=x^{2}+\frac{y^{2}}{4}$.
[6] 4. Show that $f(x, y)=\left(x^{4}-y^{2}\right) /\left(x^{4}+y^{2}\right)$ has no limit as $(x, y) \rightarrow(0,0)$. (Hint: Try the two paths test.)
5. Compute the first partial derivatives of the given function.
[6] a. $g(u, v)=\left(u v+v^{2}-1\right)^{4}$.
[6] b. $f(t, \alpha)=\cos (2 \pi t-\alpha)$.
[6] 6. Compute the second-order partial derivatives of $u(x, y)=\sin \left(x^{2}-y\right)$.
7. A function $z=z(x, y)$ is defined implicitly by the equation

$$
z+e^{x z}+\ln (x+y)=y^{2}
$$

[6] a. Find $\partial z / \partial y$.
[2] b. Find $z_{y}(0,1)$.

