Math 208, Summer 2007, Exam 1
Show your work. Justify your conclusions.
[4] 1. Find the center and radius of the sphere given by $x^{2}-4 x+y^{2}+z^{2}+2 z=1$.
2. Let $P(1,1,2), Q(4,0,-1)$ and $R(-2,3,1)$ be points in \mathbf{R}^{3}.
[3] a. Write $\overrightarrow{R Q}$ in component form.
[4] \mathbf{b}. Write $\overrightarrow{R Q}$ in the form (magnitude) \times (direction).
[4] c. Find the vector of magnitude 3 that points opposite $\overrightarrow{P Q}$.
[3] d. Find a point $S \in \mathbf{R}^{3}$ such that $\overrightarrow{P Q}=\overrightarrow{R S}$.
3. Let $\vec{u}=\langle 1,2,-1\rangle, \vec{v}=\langle 3,1,0\rangle$ and $\vec{w}=\langle-2,2,1\rangle$.
[4] a. Compute $|2 \vec{w}-3 \vec{v}|$.
[4] b. Compute $\operatorname{proj}_{\vec{w}} \vec{v}$.
[4] c. Compute the component of \vec{w} along \vec{u}
[4] d. Compute the angle between $2 \vec{v}$ and \vec{w}.
4. Let \vec{u}, \vec{v} and \vec{w} be as in problem 3 .
[4] a. Compute $\vec{v} \times \vec{w}$.
[4] b. Find a vector that is orthogonal to \vec{v} and \vec{w}.
[4] c. Compute the area of the parallelogram formed by \vec{v} and \vec{w}.
[4] d. Compute the volume of the parallelpiped formed by \vec{u}, \vec{v} and \vec{w}.

