Exam 3 Solutions

1. If you use d-notation, then the partial derivatives are

$$
\frac{\partial w}{\partial s}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial f}{\partial y} \frac{d y}{d s}
$$

and

$$
\frac{\partial w}{\partial t}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial f}{\partial z} \frac{d z}{d t}
$$

2. By the chain rule,

$$
\begin{aligned}
w_{x} & =f_{u} u_{x}+f_{v} v_{x} \\
& =x f_{u}+y f_{v}
\end{aligned}
$$

And by the chain and product rules,

$$
\begin{aligned}
w_{x x} & =f_{u}+x\left[f_{u u} u_{x}+f_{u v} v_{x}\right]+y\left[f_{v u} u_{x}+f_{v v} v_{x}\right] \\
& =f_{u}+x^{2} f_{u u}+2 x y f_{u v}+y^{2} f_{v v}
\end{aligned}
$$

By a similar calculation,

$$
w_{y y}=-f_{u}+x^{2} f_{v v}-2 x y f_{u v}+y^{2} f_{u u}
$$

Therefore,

$$
w_{x x}+w_{y y}=\left(x^{2}+y^{2}\right)\left(f_{u u}+f_{v v}\right)=0
$$

3a. The linear approximation is

$$
\begin{aligned}
z & =f(2,1)+f_{x}(2,1)(x-2)+f_{y}(2,1)(y-1) \\
& =2+2(x-2)-(y-1) \\
& =-1+2 x-y
\end{aligned}
$$

3b. With $d x=.02$ and $d y=-.04$, we get the approximation

$$
\begin{aligned}
f(2.02)-f(2,1) & \approx f_{x}(2,1) d x+f_{y}(2,1) d y \\
& =.08
\end{aligned}
$$

4a. The directional derivative is

$$
D_{\vec{v}} g(2,1,1)=\nabla g(2,1,1) \cdot\left(\frac{\vec{v}}{|\vec{v}|}\right)=\sqrt{2}
$$

4b. The unit direction of most rapid increase is $\nabla g(2,1,1) /|\nabla g(2,1,1)|=\langle 1,2,-1\rangle / \sqrt{6}$. The derivative in that direction is $|\nabla g(2,1,1)|=\sqrt{6}$.
5. The surface is a level surface of the function $F(x, y, z)=x^{3}+x z+y^{2}+z^{2}$. Hence the normal at $(1,-1,1)$ is $\nabla F(1,-1,1)=\langle 4,-2,3\rangle$.

6a. At a critical point, $\nabla f(x, y)=\overrightarrow{0}$, that is

$$
\left\{\begin{array}{l}
4 x-2 y=0 \\
-3 y^{2}-2 x=0
\end{array}\right.
$$

The solutions are $(0,0)$ and $(-1 / 6,-1 / 3)$.
6b. By the second derivative test, f has a saddle at $(0,0)$, and a local minimum at $(-1 / 6,-1 / 3)$.
7. The Lagrange multiplier method yields the three equations

$$
\left\{\begin{array}{l}
2 e^{2 x+y}=2 \lambda x \\
e^{2 x+y}=2 \lambda y \\
x^{2}+y^{2}=5
\end{array}\right.
$$

The solutions are $(2,1)$ and $(-2,-1)$. Hence the maximum value is $f(2,1)=e^{5}$, and the minimum, $f(-2,-1)=e^{-5}$.

