1. If you use d-notation, then the partial derivatives are

$$\frac{\partial w}{\partial s} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial f}{\partial y} \frac{dy}{ds},$$

and

$$\frac{\partial w}{\partial t} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial f}{\partial z} \frac{dz}{dt}.$$

2. By the chain rule,

$$w_x = f_u u_x + f_v v_x$$
$$= x f_u + y f_v.$$

And by the chain and product rules,

$$w_{xx} = f_u + x [f_{uu}u_x + f_{uv}v_x] + y [f_{vu}u_x + f_{vv}v_x]$$

= $f_u + x^2 f_{uu} + 2xy f_{uv} + y^2 f_{vv}$.

By a similar calculation,

$$w_{yy} = -f_u + x^2 f_{vv} - 2xy f_{uv} + y^2 f_{uu}.$$

Therefore,

$$w_{xx} + w_{yy} = (x^2 + y^2) (f_{uu} + f_{vv}) = 0.$$

3a. The linear approximation is

$$z = f(2,1) + f_x(2,1)(x-2) + f_y(2,1)(y-1)$$

= 2 + 2(x - 2) - (y - 1)
= -1 + 2x - y.

3b. With dx = .02 and dy = -.04, we get the approximation

$$f(2.02) - f(2,1) \approx f_x(2,1) dx + f_y(2,1) dy$$

= .08.

4a. The directional derivative is

$$D_{\vec{v}}g(2,1,1) = \nabla g(2,1,1) \cdot \left(\frac{\vec{v}}{|\vec{v}|}\right) = \sqrt{2}.$$

- **4b.** The unit direction of most rapid increase is $\nabla g(2,1,1)/|\nabla g(2,1,1)| = \langle 1,2,-1 \rangle/\sqrt{6}$. The derivative in that direction is $|\nabla g(2,1,1)| = \sqrt{6}$.
 - **5**. The surface is a level surface of the function $F(x, y, z) = x^3 + xz + y^2 + z^2$. Hence the normal at (1, -1, 1) is $\nabla F(1, -1, 1) = \langle 4, -2, 3 \rangle$.

6a. At a critical point, $\nabla f(x,y) = \vec{0}$, that is

$$\begin{cases} 4x - 2y = 0, \\ -3y^2 - 2x = 0. \end{cases}$$

The solutions are (0,0) and (-1/6,-1/3).

- **6b.** By the second derivative test, f has a saddle at (0,0), and a local minimum at (-1/6,-1/3).
 - 7. The Lagrange multiplier method yields the three equations

$$\begin{cases} 2e^{2x+y} = 2\lambda x, \\ e^{2x+y} = 2\lambda y, \\ x^2 + y^2 = 5. \end{cases}$$

The solutions are (2,1) and (-2,-1). Hence the maximum value is $f(2,1)=e^5$, and the minimum, $f(-2,-1)=e^{-5}$.