Exam 2 Solutions

1. The plane passing through $(1,2,-1)$ has normal $\langle 3,1,2\rangle$. Hence its equation is

$$
3(x-1)+(y-2)+2(z+1)=0
$$

2a. Since gravity alone acts on the projectile,

$$
\begin{equation*}
\vec{r}^{\prime \prime}(t)=-9.8 \vec{\jmath} \tag{1}
\end{equation*}
$$

The initial velocity is

$$
\begin{equation*}
\vec{r}^{\prime}(0)=200 \vec{\imath}+200 \sqrt{3} \vec{\jmath} \tag{2}
\end{equation*}
$$

and the initial position,

$$
\begin{equation*}
\vec{r}(0)=\overrightarrow{0} \tag{3}
\end{equation*}
$$

Integrate twice, using (2) and (3) to evaluate the constants of integration. You'll get

$$
\begin{equation*}
\vec{r}(t)=200 t \vec{\imath}+\left(200 \sqrt{3} t-4.9 t^{2}\right) \vec{\jmath} \tag{4}
\end{equation*}
$$

$\mathbf{2 b}$. The projectile is on the ground when the vertical component of $\vec{r}(t)$ is equal to zero. This happens at $t=0$ (the launch time) and at $t^{*}=22 \sqrt{3} / 4.9 \approx 70.7 \mathrm{sec}$, (the impact time).

2c. The length of the trajectory is

$$
L=\int_{0}^{t^{*}}\left|\vec{r}^{\prime}(t)\right| d t=\int_{0}^{70.7} \sqrt{200^{2}+(200 \sqrt{3}-4.9 t)^{2}} d t
$$

3. The level curves of f are the concentric ellipses

$$
x^{2}+\frac{y^{2}}{4}=c, \quad c \geq 0
$$

4. On the ray $y=x, x>0, f$ has value

$$
f(x, x)=\frac{x^{2}-1}{x^{2}+1}
$$

So as $(x, y) \rightarrow(0,0)$ along this ray, $f(x, y)=f(x, x) \rightarrow-1$. On the parabolic arc $y=x^{2}, x>0, f$ has value

$$
f\left(x, x^{2}\right)=0
$$

So as $(x, y) \rightarrow(0,0)$ along this, curve $f(x, y)=f(x, 2 x) \rightarrow 0$. So by the two paths test, $f(x, y)$ has no limit as $(x, y) \rightarrow(0,0)$. (There is more than one pair of paths that will work.)

5a. The first partial derivatives are

$$
\frac{\partial g}{\partial u}=4 v\left(u v+v^{2}-1\right)^{3} \quad \text { and } \quad \frac{\partial g}{\partial v}=4(u+2 v)\left(u v+v^{2}-1\right)^{3}
$$

5b. The first partial derivatives are

$$
\frac{\partial f}{\partial t}=-2 \pi \sin (2 \pi t-\alpha) \quad \text { and } \quad \frac{\partial f}{\partial \alpha}=\sin (2 \pi t-\alpha)
$$

6. Since $u_{x}=2 x \cos \left(x^{2}-y\right)$ and $u_{y}=-\cos \left(x^{2}-y\right)$, the second partial derivatives of u are

$$
u_{x x}=2 \cos \left(x^{2}-y\right)-4 x^{2} \sin \left(x^{2}-y\right), \quad u_{x y}=u_{y x}=2 x \sin \left(x^{2}-y\right)
$$

and

$$
u_{y y}=-\sin \left(x^{2}-y\right)
$$

7. The equation defining z as a function of x and y is

$$
\begin{equation*}
z+e^{x z}+\ln (x+y)=y^{2} \tag{5}
\end{equation*}
$$

7a. Differentiate equation (5) with respect to y :

$$
z_{y}+x z_{y} e^{x z}+\frac{1}{x+y}=2 y .
$$

Therefore,

$$
\begin{equation*}
\frac{\partial z}{\partial y}=\frac{2 y(x+y)-1}{(x+y)\left(1+x e^{x z}\right)} \tag{6}
\end{equation*}
$$

7b. Plug $x=0, y=1$ into equation (5), and solve for $z=z(0,1)=0$. Now plug $x=0$, $y=1$ and $z=0$ into (6) to get

$$
z_{y}(0,1)=1
$$

