Print Your Name Legibly:
NUID: \qquad
1 (15pts) Let $f(x, y)=6 x^{2}-2 x^{3}+3 y^{2}+6 x y$.
(a) Find all critical points of the function.
(b) Classify all critical points as local max, or local min, or saddle, or undetermined by the second derivative test.

2(15pts) Use the Lagrange multiplier method to find the constraint maximum and minimum of function $f(x, y, z)=x+y+2 z$ subject to $x^{2}+y^{2}+2 z^{2}=1$.
$3(15 \mathrm{pts})$ (a) Sketch the region of the integral $\int_{0}^{1} \int_{y}^{1} \sqrt{x^{2}+y^{2}} d x d y$.
(b) Switch the iterated integral to polar coordinates. (Do not evaluate any of the iterated integrals.)
$4(15 \mathrm{pts})$ Let W be a sphere-capped cone bounded by $x^{2}+y^{2}+z^{2}=1$ and $z=\sqrt{x^{2}+y^{2}}$. The volume of the solid is given, which is $\frac{(2-\sqrt{2}) \pi}{12}$. Find the center $(\bar{x}, \bar{y}, \bar{z})$ of the solid. (You can use the symmetry of the solid as a shortcut to find \bar{x}, \bar{y}.)

$5(10 \mathrm{pts})$ (a) Sketch the region for the double integral $\int_{0}^{\pi / 4} \int_{0}^{\sec (\theta)} r^{3} d r d \theta$.
(b) Compute the iterated integral. (You can use the identities: $\sec ^{2}(t)=1+\tan ^{2}(t)$, $\tan ^{\prime}(t)=\sec ^{2}(t)$.)
\qquad
$6(15 \mathrm{pts})$ Let G be the solid bounded by these surfaces: the $x y$-plane, three vertical planes: $y=x, y=-x$, and $x=1$, and the cone $z=\sqrt{x^{2}+y^{2}}$. Let $\delta(x, y, z)=x$ be the density of the solid.
(a) Set up an iterated integral in the order of $d z d y d x$ for the mass of the solid. Do not evaluate the integral.
(b) Set up an iterated integral in the spherical coordinate for the mass of the solid. Do not evaluate the integral.
\qquad
$7(15 \mathrm{pts})$ (a) Find the quadratic Taylor polynomial for $z=f(x, y)=\sin (x+3 y)$ at $\left(\frac{\pi}{2}, 0\right)$.
(b) Use the quadratic Taylor polynomial to approximate $f\left(\frac{\pi}{2}, 0.1\right)$.
(c) The level curves of the function $z=f(x, y)$ are given by the contour diagram as shown. Determine the sign of $f_{x x}(P)$ (positive, negative, or zero). Assume the x and y-axes are in the usual positions. You must show work to receive credit.

2 pt Bonus Question: The first capital city of Nebraska was: (a) Lincoln (b) Grand Island (c) Omaha (d) None of the above.

