Math	208	Fall	2020
watii	4 00	ran	4040

Exam 2

Recitation Section:

Print Your Name Legibly: _____ NUID: ____

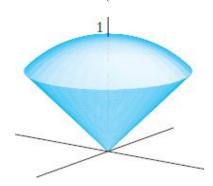
1(15pts) Let $f(x,y) = 6x^2 - 2x^3 + 3y^2 + 6xy$.

- (a) Find all critical points of the function.
- (b) Classify all critical points as local max, or local min, or saddle, or undetermined by the second derivative test.

Print Your Name Legibly:	NUID:
--------------------------	-------

2(15pts) Use the Lagrange multiplier method to find the constraint maximum and minimum of function f(x, y, z) = x + y + 2z subject to $x^2 + y^2 + 2z^2 = 1$.

Print	Vour	Name	Legibly:	
T 11110	Ioui	ranic	Legibly.	


NUID: _____

- 3(15pts) (a) Sketch the region of the integral $\int_0^1 \int_y^1 \sqrt{x^2 + y^2} dx dy$.
 - (b) Switch the iterated integral to polar coordinates. (Do not evaluate any of the iterated integrals.)

Print Your Name Legibly: _____

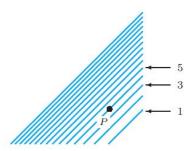
NUID: _____

4(15pts) Let W be a sphere-capped cone bounded by $x^2+y^2+z^2=1$ and $z=\sqrt{x^2+y^2}$. The volume of the solid is given, which is $\frac{(2-\sqrt{2})\pi}{12}$. Find the center $(\bar{x},\bar{y},\bar{z})$ of the solid. (You can use the symmetry of the solid as a shortcut to find \bar{x} , \bar{y} .)

Print	Your	Name	Legibly:	
1 11110	Ioui	1 valific	Ecgioty.	

NUID: _____

5(10pts) (a) Sketch the region for the double integral $\int_0^{\pi/4} \int_0^{\sec(\theta)} r^3 dr d\theta$.


(b) Compute the iterated integral. (You can use the identities: $\sec^2(t) = 1 + \tan^2(t)$, $\tan'(t) = \sec^2(t)$.)

Print Your Name Legibly: _	NUID:
----------------------------	-------

- 6(15pts) Let G be the solid bounded by these surfaces: the xy-plane, three vertical planes: y = x, y = -x, and x = 1, and the cone $z = \sqrt{x^2 + y^2}$. Let $\delta(x, y, z) = x$ be the density of the solid.
 - (a) Set up an iterated integral in the order of dzdydx for the mass of the solid. Do not evaluate the integral.
 - (b) Set up an iterated integral in the spherical coordinate for the mass of the solid. Do not evaluate the integral.

7(15pts) (a) Find the quadratic Taylor polynomial for $z = f(x, y) = \sin(x+3y)$ at $(\frac{\pi}{2}, 0)$.

- (b) Use the quadratic Taylor polynomial to approximate $f(\frac{\pi}{2}, 0.1)$.
- (c) The level curves of the function z = f(x, y) are given by the contour diagram as shown. Determine the sign of $f_{xx}(P)$ (positive, negative, or zero). Assume the x- and y-axes are in the usual positions. You must show work to receive credit.

