Name:

Circle the name of your instructor:

Brown	Deng	DeVries	Lindo	Lutz	Nasseh
11:30 am	12:30 pm	6:30 pm	10:30 am	9:30 am	12:30 pm
Pei	True	True	Webb	Yang	
12:30 pm	8:30 am	1:30 pm	1:30 pm	1:30 pm	

Instructions

- There are **12** questions on **8** pages (including this cover sheet).
- Turn off all communication devices.
- No books or other notes are allowed.
- You may use a calculator, but an answer will only be counted if it is supported by all the work necessary to obtain that answer.
- Simplify as much as possible, except as noted. For example, write $\sqrt{2}/2$ instead of $\cos(\pi/4)$.
- Give exact answers only, except as noted. For example, use π instead of 3.1415 if π is the answer.
- Show all your work and explain your answers. Unsupported answers will receive little credit.
- If specified, use the method required by each problem. Alternate methods will not receive full credit.
- You have 2 hours to complete the exam.

Good luck!

Question	Out of	Score
1	25	
2	25	
3	10	
4	15	
5	15	
6	15	
7	15	
8	15	
9	20	
10	15	
11	15	
12	15	
Total	200	

1(25pts)	Let $\vec{v} = 2\vec{i}$	$-2\vec{j} + \vec{k}$ and	$d \vec{w} = 3\vec{i} - 4\vec{k}$
----------	--------------------------	---------------------------	-----------------------------------

(a) Find $\|\vec{v}\|$, $\|\vec{w}\|$.

(b) Find the angle between \vec{v} and \vec{w} .

(c) Find a vector perpendicular to both \vec{v} and \vec{w} .

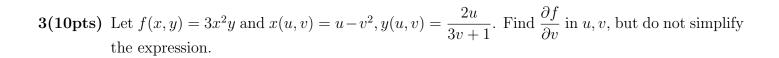
- (d) Find the area of the parallogram whose sides are formed by \vec{v} and \vec{w} .
- (e) Find the equation of the plane containing point (1,3,2) and perpendicular to \vec{v} .

2((25pts)	Let	f(x)	(c, y)) =	x	+	y^2	+	x^2y	1.
- \) ("	' 1 <i>0 1</i>			•	9		9	

(a) Find $f_x(x,y), f_y(x,y), f_{xy}(x,y)$ and evaluate them all at the point (1,2).

(b) Find the directional derivative of the function f(x,y) at point (1,2) in the direction of $\vec{v} = -3\vec{i} + 4\vec{j}$.

- (c) Find the direction from the point (1,2) in which f(x,y) is increasing most rapidly.
- (d) Find the maximal rate of increase of the function at the point (1,2).
- (e) Find the equation of the tangent plane of the graph z=f(x,y) at the point (1,2).



4(15pts) Find the potential function for the vector field $\vec{F} = \langle 2xy, x^2 + 2 \rangle$ or show that it fails to exist.

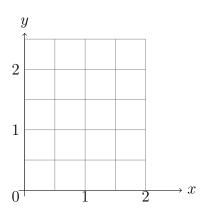
- **5(15pts)** For the function $f(x,y) = y^2 + y + x^2y \frac{2}{3}x^3$,
 - (a) Verify that $(0, -\frac{1}{2})$ is a critical point. (You do not need to solve for all critical points.)

(b) Use the second derivative test to determine if $(0, -\frac{1}{2})$ is a local maximum, a local minimum, or a saddle point.

6(15pts) Use the Lagrange multiplier method to find the minimal value of the function f(x, y) = x + 2y that is subject to the constraint $x^2 + 2y^2 = 3$.

7(15pts) For the iterated double integral $\int_0^2 \int_{u/2}^1 e^{x^2} dx dy$.

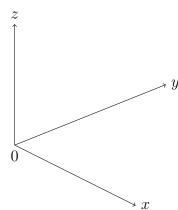
(a) Sketch the region of the integral.



(b) Change the order of integration to dydx. Do not evaluate the integral.

8(15pts) Let W be the solid bounded by the plane 6x + 3y + 2z = 6 in the first octant.

(a) Sketch the solid.



(b) Set up an iterated triple integral in the order of dxdydz for $\iiint_W zdV$. Do not evaluate the iterated integral.

9(20pts)	Suppose the motion of a particle is given by $x=4\cos t, y=\sin t, z=2t$ for $0\leq t\leq \pi$. (a) Find the velocity vector \vec{v} of the motion at $t=\pi/4$.
	(b) Find acceleration vector \vec{a} of the motion at $t = \pi/4$.
	(c) Find the equation of the tangent line to the path of the motion at $t=\pi/4$.
$10(15 \mathrm{pts})$	For the force field $\vec{F}(x,y,z)=(y+z)\vec{i}+(-2x-z)\vec{j}+x\vec{k}$ and the line path C from $P(1,0,-1)$ to $Q(2,1,1)$. (a) Find a parameterized equation for C .

(b) Find the work done by \vec{F} on an object that moves from P to Q on C.

11(15pts) Use the Divergence Theorem to set up an iterated integral for the flux of the vector field $\vec{F}(x,y,z) = xz\vec{i} + yx\vec{j} + zy\vec{k}$ through the surface of the rectangular solid $0 \le x \le 2, 0 \le y \le 1, 0 \le z \le 1$ oriented outward. **Do not evaluate the integral.**

- **12(15pts)** Let S be the part of the parabola $z = f(x,y) = x^2 + y^2$ above the region: $x^2 + y^2 \le 1, x \ge 0, y \ge 0$, oriented upward.
 - (a) Find the differential area vector $d\vec{A}$ at any point of the surface.
 - (b) Set up an iterated double integral in polar coordinate for the flux of the vector field $\vec{F}(x,y,z) = y\vec{i} x\vec{j} + z\vec{k}$ through S.

(c) Evaluate the integral from (b) to find the flux.