Name: _____

TA's Name:

Instructions: You must show supporting work to receive full and partial credits. No text book, notes, formula sheets allowed.

1(16pts) (8pts each) (a) Evaluate the integral $\int \frac{x^2 + x + 2}{x^3 + 2x^2} dx$

(b) Find a correct form of partial fraction for $\frac{2x^2 + 3x + 3}{(x+1)^3(x^2 + 2x + 3)^2}$. Do not solve for the constants.

2(16pts) (8pts each) Determine by definition whether the improper integrals converge. Find the value of any convergent integral. Make sure to show all details.

(a)
$$\int_{2}^{3} \frac{2x}{\sqrt{x^2 - 4}} dx$$

(b)
$$\int_0^\infty \frac{\tan^{-1} x}{1 + x^2} dx$$

3(16pts) (8pts each) Use comparison tests to determine whether or not the improper integrals converge.

(a)
$$\int_{1}^{\infty} \frac{1}{1+x^3} dx$$

(b)
$$\int_{1}^{2} \frac{2 + \sin x^{2}}{(x - 1)^{2}} dx$$

(Continue on Next Page ...)

4(18pts) (9pts each) Determine if the series converge. Find the sum of any convergent series. Make sure to include sufficient details.

(a)
$$\sum_{k=2}^{\infty} (-1)^k \frac{2^{k+1}}{3^k}$$

(b)
$$\sum_{k=0}^{\infty} \frac{k \cos(1/k^2)}{2k+1}$$

5(10pts) Use the Integral Test to determine if the series $\sum_{k=1}^{\infty} ke^{-k}$ converges. Make sure to verify all the conditions of the test.

6(24pts) (8pts each) (a) Determine whether the sequence $\lim_{n\to\infty} \frac{(-1)^n n^2 + 1}{2n^2 + 2n + 1}$ converges. If it does, find the limit.

(b) Demonstrate that the sequence $a_n = \frac{n+2}{n+1}$ is monotone decreasing and find its limit $\lim_{n\to\infty} a_n$.

(c) Numerically approximate the infinite sum $\sum_{k=0}^{\infty} \frac{(-1)^k}{(k+1)2^k}$ to 4 decimal places. What is the minimum number of terms that is needed to obtain the required accuracy?

² Bonus Points: Pierre Simon Laplace worked on (a) a new calendar for Napoleon, (b) improper integrals to develop the Laplace transform, (c) a French vineyard as a slave laborer. (Circle all that are true)

(... The End)