Spring 2003

Recitation Instructor:

| No.   | 1 | 2 | 3 | 4 | 5 | 6 | Total |
|-------|---|---|---|---|---|---|-------|
| score |   |   |   |   |   |   |       |

1. (27 points, 9 points each) Evaluate each of the following integrals (You must show all of your work to receive full credit. Here, no calculators allowed).

a. 
$$\int \frac{\sin x}{3 + \cos x} dx$$

b. 
$$\int_{1}^{e} \frac{(\ln x)^{7}}{x} dx$$

c. 
$$\int \frac{1}{\sqrt{x}} \sec^2 \sqrt{x} \ dx$$



b. Find (but don't evaluate) an integral whose value gives the volume of the solid obtained by revolving the region R about the x-axis, By using the method of slicing.

c. Find (but don't evaluate) an integral whose value gives the volume of the solid obtained by revolving the region R about the y-axis, By using the method of cylindrical shells.

| 3. | (21 points, 7 points each) A tank has a square base whose length is 5 feet and rectangular sides of height 3 feet. Assume that the tank is filled with water weighing $\rho = 62.5 \ lb/ft^3$ . |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | a. Find a Riemann sum whose value approximates the work required to pump all of the water over the top of the tank.                                                                             |
|    |                                                                                                                                                                                                 |
|    |                                                                                                                                                                                                 |
|    |                                                                                                                                                                                                 |
|    |                                                                                                                                                                                                 |
|    | b. Write down <b>but do not evaluate</b> an integral whose value is exactly the work required to pump all of the water over the top of the tank.                                                |
|    |                                                                                                                                                                                                 |
|    |                                                                                                                                                                                                 |
|    |                                                                                                                                                                                                 |
|    | c. Write down <b>but do not evaluate</b> an integral whose value is exactly the force exerted by the water on one side of the tank.                                                             |
|    |                                                                                                                                                                                                 |
|    |                                                                                                                                                                                                 |
|    |                                                                                                                                                                                                 |

4. (8 points) Find  $f^{-1}(x)$  if  $y = f(x) = 4 + 3e^{2x}$ .

5. (14 points) This question deals with the function  $f(x) = 2x^3 + 5x - 1$ . a.(4 pts.) Show that  $f^{-1}$  exists.

b. (10 pts.) Find the equation of the tangent line to the function  $y = f^{-1}(x)$  at the point (6, 1).

6. (8 points) Let y(t) be the amount of radioactive element present at time  $t \ge 0$ , and assume that y(t) satisfies the equation:  $\frac{dy}{dt} = -0.3y$ . Write down the exact form of y(t) and find the half life of the radioactive element.