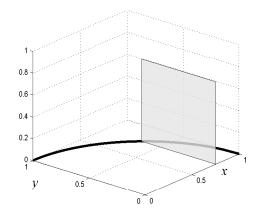
Name: _____

TA's Name: ____

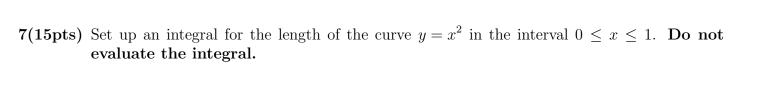
Instructions: You must show supporting work to receive full and partial credits. No text book, notes, formula sheets allowed.

1(13pts) Use the definition to determine if the improper integral converge: $\int_1^2 \frac{1}{x-1} dx$. (Show all work.)

2(12pts) Some values of a function y = f(x) are given in the table below.


x	1	1.5	2	2.5	3
f(x)	1	2.25	4	6.25	9

(a) Use the right point sum with two partition, R_2 , to approximate $\int_1^3 f(x)dx$.


(b) Use the midpoint sum, M_2 , to approximate $\int_1^3 f(x)dx$.

3(15pts) Let R be the region in the first quadrant that is bounded by two curves: $y = x^3$ and y = x. Sketch the region and set up a definite integral for its area. **Do not evaluate the integral.**

4(10pts) The base of a solid is a quarter disk bounded by $x^2 + y^2 = 1$, $x \ge 0, y \ge 0$. Each cross section of the solid that is perpendicular to the x-axis is a square as shown. Set up an integral for the volume of the solid. **Do not evaluate the integral.**

8(10pts) Use the Comparison Test to determine whether the improper integral converge or diverge: (Hint: Use $x \ge \sqrt{x}$ for $x \ge 1$. Show all work.)

$$\int_{2}^{\infty} \frac{x - \sqrt{x}}{x^2 - 1} \, dx$$

.