MATH 107 Quiz 10

Name:_______ Score:_____

Instructions: You must show supporting work to receive full and partial credits. No text book, notes, formula sheets allowed. One point to each question.

- (1) A geometric series $\sum ar^k$ converges if (a) r > 0; (b) |r| > 1; (c) -1 < r < 1.
- (2) If $\lim a_k = 0$, then the series $\sum a_k$ (a) converges; (b) diverges; (c) may or may not converge.
- (3) In order to use the integral test for a series $\sum a_k$, the following conditions must satisfy: (a) $f(k) = a_k$, (b) $f(x) \ge 0$, (c) $f(x) \ge 0$ is continuous, (d) and $f(x) \ge 0$ is _____.
- (4) If $\sum |a_k|$ converges, then (a) $\sum (-1)^k a_k$ converges; (b) $\sum (-1)^k a_k$ diverges; (c) $\sum (-1)^k a_k$ may or may not converge.
- (5) If $a_k \ge 0$ and $\lim a_k = 0$, then $|S_n S| < a_{n+1}$ holds (a) always; (b) a_k is monotone decreasing; (c) some of the times.
- (6) If $0 \le a_k \le b_k$ and $\sum a_k$ converges, then $\sum b_k$ (a) converges too; (b) diverges; (c) may or may not converge.
- (7) If $\lim |a_{k+1}/a_k| = L \neq 0$, then the power series $\sum a_k(x-c)^k$ converges for (a) c 1/L < x < c + 1/L; (b) c L < x < c + L; (c) x = c, L only.
- (8) If $\lim |b_k/a_k| = L \neq 0$, and $\sum a_k$ converges absolutely, then $\sum b_k$ (a) converges conditionally; (b) converges absolutely; (c) diverges.
- (9) $\sum (-1)^k 1/k^p$ (a) converges absolutely for $p \ge 1$; (b) converges absolutely for p > 1; (c) diverges 0 ;
- (10) If $\lim a_k = 10$, then (a) $\sum a_k = 10$; (b) $\sum (-1)^k a_k = 0$; (c) $\lim a_{k+1}/a_k = 1$.