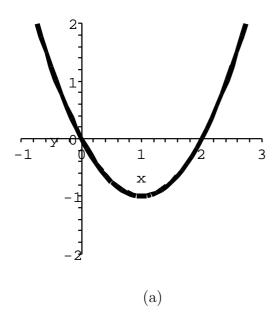
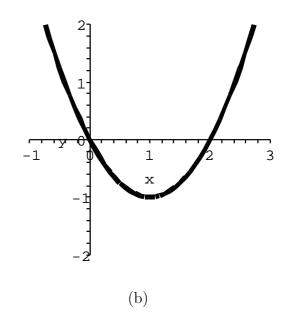

Name: _____


TA's Name: _____


Instructions: You must show supporting work to receive full and partial credits. No text book, notes, formula sheets allowed.

1. (10 pts) The graph of a function f(x) is given below. Superimpose the graphs of (a) f(2x) and (b) f(x) + 1.

2. (14 pts) (a) The graph of a function f(x) is given, superimpose a plausible graph of f'(x) on the same plot. (b) The graph of the derivative g'(x) is given, superimpose a plausible graph of g(x) satisfying that g(0) = 0.

- 3. (14 pts, 7 pts each) Use exact values, that is, if e is the quantity, leave as it is. Answers such as 2.71828... for e are not acceptable and will not receive any credit. So do not use your calculator. Show all of your work.
 - (a) Find all values of x that satisfy $\ln x \ln(x-1) = 1$.

(b) Let $-\frac{\pi}{2} < \theta < 0$ and $\cos \theta = \frac{1}{3}$. Find the exact value of $\tan \theta$.

4. (14 pts) Using the definition only to find the exact value of f'(1) if $f(x) = (x+1)^2$. Any other method to compute f'(1) will not receive any credit.

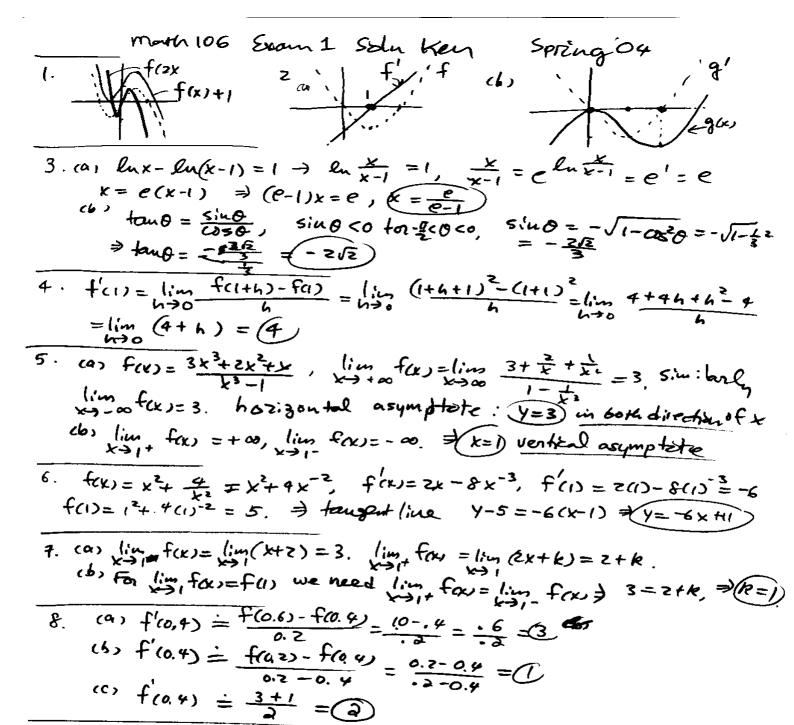
- 5. (14 pts) Let $f(x) = \frac{3x^3 + 2x^2 + x}{x^3 1}$.
 - (a) Evaluate $\lim_{x\to+\infty} f(x)$, and determine whether or not f has a horizontal asymptote. If yes, how many, and what are they?

(b) Does f have any vertical asymptote? If yes, what are they? Explain your answer carefully.

6. (10 pts) Find f'(x) if $f(x) = x^2 + \frac{4}{x^2}$. Then find the equation of the tangent line to f at x = 1. You can use any method of your choice to compute f'(x).

7. (14 pts) Let

$$f(x) = \begin{cases} x + 2, x < 1 \\ 2x + k, x \ge 1 \end{cases}$$


where k is a constant.

(a) Find $\lim_{x\to 1^+} f(x)$ and $\lim_{x\to 1^-} f(x)$.

(b) Find the value of k for which the function f is continuous on $(-\infty, \infty)$. Make sure to show all of your work to receive full credit.

8. (10 pts) A function f is given in the table below. Estimate f'(0.4) using (a) the forward difference scheme, (b) the backward difference scheme, (c) the average of both.

\overline{x}	0	0.2	0.4	0.6	0.8	1.0
f(x)	0	0.2	0.4	1.0	1.6	2.0

Bonus: all (a), (b), (c).