Name: Score: Instructions: You must show supporting work to receive full and partial credits.

1(20pts) (a) Find the domain of $f(x) = \frac{x-3}{x^2-x}$ and solve f(x) = 0.

(b) Find the vertical asymptote of $g(x) = \frac{1-4x}{x+2}$.

(c) Determine the behaviour of $h(x) = \frac{x + \ln x + 10}{x^{3/2} - 10}$ as $x \to +\infty$ and find the horizontal asymptote.

$$\ln(10e) - \ln 5 + \log(e^{x \ln 10}).$$

(b) Solve for x from $10^{x+3} = 5e^x$.

- (c) Circle the dominating function as $x \to +\infty$ in each pair.
 - (i) $1.1^{0.1x}$, $x^{1.1} + 1,000$ (ii) $\sqrt{x} + 1,000 \ln x$, $\log x$ (iii) $\log x$, $\ln x$

3(20pts) (a) Let $1 \le x < \infty$ be the domain of $y = f(x) = \frac{1}{\ln x + 1}$. What is the range?

(b) Explain why $y = f(x) = \frac{1}{\ln x + 1}$ with domain $1 \le x < \infty$ is invertible.

(c) Find the inverse $y = f^{-1}(x)$.

4(20pts)

(a) The graph of function y = f(x) is given. Sketch 1.5f(x) + 0.5.

y = 1.5 f(x) + 0.5

(b) Sketch the graph of the inverse of the function y = f(x).

3

(c) Find a formula for the graph given.

5(20 pts) (a) Find the equation for the line through (0,1) and (2,-1).

(b) If a line is parallel to 2x + 3y - 1 = 0, what is the slope of the line?

(c) Circle all the even functions

 $x^{10} + x^2$, $x^6 + 1$, $x^2 \cos(2x)$, $x^3 + \cos x$, $2^{2x} + x^2$

Sample Exam Sdu. Key, match 106

1. (a)
$$f(x) = \frac{x-3}{x^2-x}$$
, Domain = £all x except x=0, x=1 }
 $f(x) = 0 \Rightarrow x-3 = 0 \Rightarrow x=3$

(b)
$$g(x) = \frac{1-4x}{x+2}$$
, vertical asymptote $(x=-2)$

(c)
$$h(x) = \frac{x + \ln x + 10}{x^{3/2} - 10} \approx \frac{x}{x^{3/2}} = \frac{1}{x^{1/2}} \rightarrow 0$$
 as $x \rightarrow +\infty$.

horizontal asymptote: $(y = 0)$

a. (a)
$$\ln(\log) - \ln 5 + \log(e^{x \ln 10}) = \ln \frac{\log}{5} + \log(e^{\ln 10^{x}})$$

= $\ln 2 + 1 + \log 10^{x} = \frac{\ln 2 + 1 + x}{1 + 1 + x}$

(b)
$$10^{x+3} = 5e^{x}$$
, $|n \cdot 10^{x+3} = |n \cdot 5 + |n \cdot e^{x} \cdot (x+3)| |n \cdot 10 = |n \cdot 5 + x|$

$$\Rightarrow (|n \cdot 10 - 1) \times = |n \cdot 5 - |n \cdot 10^{3}, \Rightarrow x = \frac{-|n| \frac{1000}{5}}{|n \cdot 10^{-1}|} = \frac{|n \cdot 200|}{|-|n \cdot 10^{-1}|}$$

(e) (i) (i) (|x+1, |n \cdot 10^{3}|) (|n x |) (|n x |)

$$y = \frac{1}{\ln x + 1}, \quad y = \ln x + 1 \quad \ln x = \frac{1 - y}{y}, \quad x = e^{\frac{1 - y}{y}}.$$

$$\Rightarrow f^{-1}(x) = e^{\frac{1 - x}{x}}$$

4. (a) $\frac{1}{2}$ 1.sf(x) +.5 (b) $\frac{1}{2}$ (c) $\frac{1}{2}$ Sin($\frac{1}{2}$ x) +1. Amplitude = $\frac{1}{2}$ Period = $\frac{1}{2}$ (c) $\frac{1}{2}$ Period = $\frac{1}{2}$

5. (a) Powds (0,1), (2, 4),
$$\leq Slope = \frac{-1}{2-0} = -1$$
. line $y-1 = -1(x-0)$

(b) Any line parallel to
$$2x+3y-1=0$$
 has slope $=\left[-\frac{2}{3}\right]$