Calculus Readiness Activity V1

Name:

1. Is the following true or false?

$$\frac{a}{a+b} = \frac{\alpha}{\alpha+b} = \frac{1}{b}$$

- (a) True
- (b) False
- 2. Find the equation for the line passing through the point (4, -3) and parallel to the line whose equation is 3y 33 = 9x.

$$y = \underline{\hspace{1cm}}$$

3. Perform the indicated operations on the three expressions

$$x + \frac{6}{x^2 - 36} - \frac{x^2}{x + 6}.$$

Express your answer in simplest form $\frac{A}{B}$.

Answer: A =____ and B =____.

4. The expression $\left(\frac{x^4y^4z^3x^{-5}}{x^5y^5z^3y^3}\right)^{-3}$ equals $x^ry^sz^t$

where r, the exponent of x, is: _____

and s, the exponent of y, is: _____

and finally t, the exponent of z, is: _____.

Note: Your answers should be numbers.

5. To say that $\left|\frac{x-6}{3}\right| \leq 7$ is the same as saying x is in the closed interval [A,B]

where A is: _____

and where B is: _____.

6. Given that f(x) is a degree 3 polynomial with zeros at -7, 4, and 7, find an equation for f(x) given that the coefficient of x^3 equals 7.

 $f(x) = \underline{\hspace{1cm}}$

Note: You may insert your answer in factored form or standard form.

7. Consider the function f shown in the following graph.

Select all answers that are intervals on which f is increasing.

(b)
$$(-5,7)$$

(c)
$$(-\infty, 7)$$

(d)
$$(-\infty, -5)$$

(e)
$$(-\infty,0) \cup (9,\infty)$$

(f)
$$(-\infty, -5) \cup (7, \infty)$$

(g)
$$(-5, \infty)$$

8. Estimate the domain and range of the function y = f(x) graphed in the figure. Assume the entire graph is shown.

(a) What is the domain of f(x)?

(b) What is the range of f(x)?

9. Let f(x) and g(x) be the piecewise defined functions given below.

$$f(x) = \begin{cases} x^2, & \text{if } x \le 0, \\ x^2 + 1, & \text{if } 0 < x < 6, \\ -3, & \text{if } x \ge 6. \end{cases}$$

$$g(x) = \begin{cases} 10x - 10, & \text{if } x \le 0, \\ 3x^3, & \text{if } 0 < x < 7, \\ -9x + 7, & \text{if } x \ge 7. \end{cases}$$

$$f(g(3)) = \underline{\hspace{1cm}}$$

10. Let $f(x) = x^2 + 2x + 5$. When evaluated and simplified,

$$\frac{f(x+h) - f(x)}{h} = Ax + Bh + C,$$

where the constants

$$A = \underline{\hspace{1cm}}$$

$$B = \underline{\hspace{1cm}}$$

$$C = \underline{\hspace{1cm}}$$
.

11. Which of the following could be an equation for the graph shown to the right?

(c)
$$4^x + 5$$

(d)
$$\left(\frac{1}{4}\right)^x + 6$$

12. Using properties of logarithms,

$$\ln\left(\frac{x^{18}\sqrt{x-1}}{3x-16}\right) = A\ln x + B\ln(x-1) + C\ln(3x-16)$$

where the constants

$$A = \underline{\hspace{1cm}}$$

$$B = \underline{\hspace{1cm}}$$

$$C = \underline{\hspace{1cm}}$$
.

13. A portion of the graph $f(x) = 4 - x^2$ is shown to the right. What is the area of the shaded rectangle?

Area: _____

14. Evaluate the following expression.

$$\sin\left(\cos^{-1}\left(\frac{3}{5}\right)\right) = \underline{\qquad}$$

15. Match each of the equations below to one of the graphs by placing the corresponding letter of the equation under the appropriate graph.

(a)
$$y = \sin(t+5)$$

(b)
$$y = \sin(5t)$$

(c)
$$y = \sin(t) + 5$$

