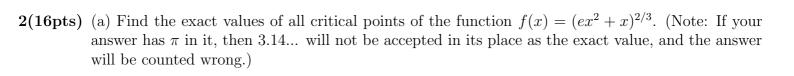
Name: \_

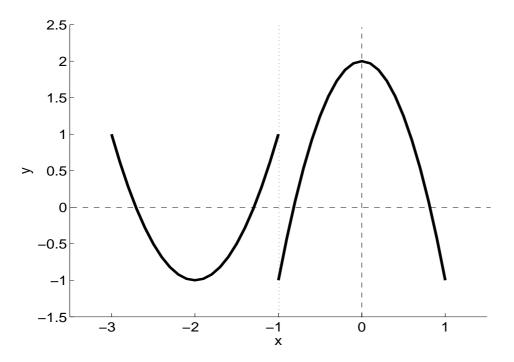
TA's Name:


| page  | 1 | 2 | 3 | 4 | 5 | 6 | total |
|-------|---|---|---|---|---|---|-------|
| score |   |   |   |   |   |   |       |

Instructions: You must show supporting work to receive full and partial credits. No text book, notes, formula sheets allowed.

1(16pts) (8 points each) Find  $\frac{dy}{dx}$  for each of the functions. (Do not simplify wherever not necessary!) (a)  $y = \frac{x^2 + \tan x^2}{e^x + \ln(x^2 + 1)}$ 

(a) 
$$y = \frac{x^2 + \tan x^2}{e^x + \ln(x^2 + 1)}$$


(b) 
$$y = \sqrt{x + \sqrt{x+1}}$$



(b) Use the first derivative test to determined the intervals in which the function is increasing and decreasing, and to determine all the local extrema.

**3(6pts)** Sketch a graph of the function satisfying these properties: f(1) = 0, f'(1) = 0,  $\lim_{x\to\infty} f(x) = 2$ , f'(x) < 0 for -1 < x < 1, f'(x) > 0 for x > 1 and x < -1, and  $\lim_{x\to -1^+} f(x) = +\infty$ .

**4(10pts)** (a)(6pts) The derivative f'(x) of a function f(x) on an interval is shown below. **Find** all the critical points in the interval by labelling them on the graph as a, b, c, ..., etc. and then **classify** them by the First Derivative Test.



(b)(4pts) On the same graph, sketch a plausible graph of y = f(x) featuring all important elements of the function and f(-3) = 0.



| 6(18pts) | (a)(12pts) Find an equation of the tangent line to the curve defined by the equation $x^3 + x^2y^3 = x + 3y$ |
|----------|--------------------------------------------------------------------------------------------------------------|
|          | at the point $(-1,0)$ .                                                                                      |

(b)(6pts) Use the linear approximation to estimate the value f(2.1) given the following information:

| x    | 1.9  | 1.95 | 2    |
|------|------|------|------|
| f(x) | 10.3 | 10.7 | 11.0 |

7(12pts) Find limits:

(a) 
$$\lim_{x \to 0} \frac{e^x - 1 - x}{x^2}$$

(b) 
$$\lim_{x \to 1^+} \frac{\sin x}{x^2 - 1}$$

**8(6pts)** Find the value of g'(1) if  $g(x) = \sin^2(f(2x+1))$  and  $f(3) = \pi/4$ , f'(3) = -1.

**<sup>2</sup> Bonus Points**: True or false: The custom of serving Fortune Cookies in Chinese restaurants came from China.  $(...\ The\ End)$