Name: _____

TA's Name:

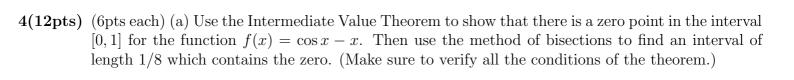
page	1	2	3	4	5	6	total
score							

Instructions: You must show supporting work to receive full and partial credits. No text book, notes, formula sheets allowed.

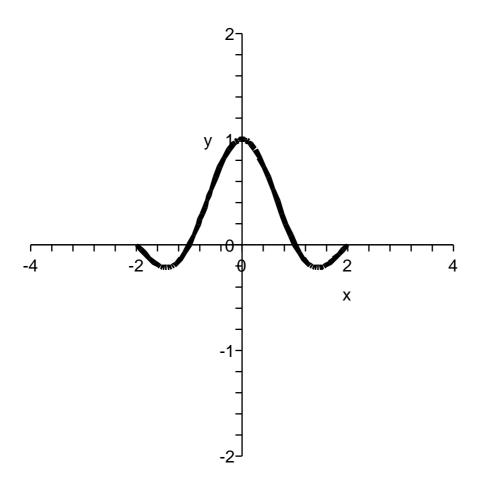
1(14pts) (7pts each) (a) Find the limit of

$$\lim_{x \to 1} \frac{x^2 + 2x - 3}{x - 1}$$

analytically. (Use long division to simplify. Numerical and graphical means are not accepted.)


(b) Estimate the length of the curve $y = x^3 + 2$ in the interval $0 \le x \le 1$ use n = 4 line segments.

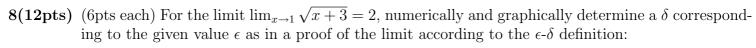
(b) Estimate the slope of $f(x) = \sqrt{x+1}$ at x = 2.


3(12pts) (6pts each) (a) Find the exact solutions of $\sin^2 x - \sin x = 0$.

(b) Find the exact solution of $2\ln(4x) - 1 = 6$. (Comment: if π is part of the answer, an approximation such as 3.14... will not be accepted as an answer.)

(b) Use the Squeeze Theorem to determine the limit $\lim_{x\to 0} x^3 \sin^2 \frac{1}{x}$. (Make sure to verify all the conditions of the theorem.)

5(12pts) (4pts each) The graph of a function y = f(x) is given below. Sketch the graphs of (a) f(x+1), (b) -2f(x), (c) f(2x). (Label all graphs.)



6(12pts) Find the discontinuity of the function $f(x) = \frac{\sin x - 1}{x(x - \pi/2)}$. For each discontinuity that is removable, define a new function that removes the discontinuity. (Show your work, numerical or graphical, on all relevant limits.)

F (10 /)	(6pts each)	Given the	c .·	f(x) =	$x^2 - x$	-2
7(12pts)			ie function		$\overline{2x^2-x}$	$\frac{-6}{-6}$.

(a) Find all the horizontal asymptotes. (Show your work on all relevant limits.)

(b) Find all the vertical asymptotes. (Show your work on all relevant limits.)

(a)
$$\epsilon = 0.1$$

(b) $\epsilon = 0.01$

² Bonus Points: Sir Isaac Newton made major discoveries in these areas (circle all that apply): (a) optics, (b) calculus, (c) physics, (d) evolution. (... The End)