Final Exam Study Guide $_{\mathrm{Math}\ 106}$

Chapter 1

• Pre-Calculus	
- Exponential functions and logarithms (1.2, 1.4)	
 Trigonometric functions (1.5) Making new functions from old - including shifts, stretches, compositions, inver- 	rses (1.3)
• Continuity	505 (1.0)
- Continuity on an interval (1.7)	
- Intermediate Value Theorem (1.7)	
- Continuity at a point (1.8)	
• Limits	
- Two-sided limits (1.8)	
- One-sided limits (1.8)	
- Limits at infinity (1.8)	
Chapter 2	
• Velocity	
- Average velocity over (a, b) (2.1)	
- Instantaneous velocity at $t = a$ (2.1)	
• Definition of derivative	
- Derivative at a point (2.2)	
- Slopes/equations of tangent lines and relationship with $f'(a)$ (2.2)	
- Derivative function (limit definition) (2.3)	
- Using $f'(x)$ to determine when $f(x)$ is increasing/decreasing (2.3)	
- Interpretations of $f'(x)$ when $f(x)$ has context (2.4)	
– Second derivative and using $f''(x)$ to determine when $f(x)$ is concave up/down	\square
 Relationship of position, velocity, and acceleration (2.5) 	
- When a derivative does not exist (2.6)	
Chapter 3	
• Differentiation Rules	
- Rules for constant multiples, sums, differences of functions (3.1)	
- Power rule (3.1)	
- Rules for exponential functions (both $y = e^x$ and $y = a^x$) (3.2)	
- Product, quotient, and chain rules (3.3, 3.3, 3.4, respectively)	

- Derivatives of $\sin x$, $\cos x$, and $\tan x$ (3.5)	
- Derivatives of inverse functions (3.6)	
- Derivatives of natural log, arcsin, arctan, arcsec (3.6)	
– Using all the above rules to find equations of tangent lines and $f''(x)$ (all)	
- Implicit differentiation (3.7)	
- Finding equations of tangent lines of implicit functions (3.7)	
- Definitions and basic properties of hyperbolic functions (3.8)	
- Derivatives of hyperbolic functions (3.8)	
• Theorems on differentiable functions (3.10)	
– Mean Value Theorem (Rolle's Theorem)	
- The Racetrack Principle	
- The Increasing Function Theorem	
- The Constant Function Theorem	
• Linear approximation (3.9)	
- Tangent line approximation/local linearization	
 Using local linearization to approximate nearby values 	
Chapter 4	
• Using first and second derivatives	
- Determining local maxima and minima (4.1)	
 Critical points and values 	
- First derivative test	
- Second derivative test	
- Inflection points (4.1)	
– Determining where a function is increasing/decreasing, concave up/concave down (4.1)	
- Using derivative data to sketch graphs (4.1)	
- Finding global maximum and minimum (4.2)	
- Extreme Value Theorem	
- On closed intervals	
- On open intervals/all real numbers	
• Optimization and Geometry (4.3)	
 Setting up problems described by functions on a graph 	
 Setting up problems involving geometric objects 	
 Setting up problems described in words 	
• Families of Functions (4.4)	

- Motion under gravity, bell shaped curves, exponential model with a limit, logistic model	
 Investigating parameters, finding critical points/inflection points in a family 	
• Related Rates (4.6)	
- Drawing an appropriate picture	
- Finding solutions	
• Applications of Differentiation	
- L'Hôpital's rule (4.7)	
- Indeterminate forms $\frac{0}{0}$ and $\frac{\infty}{\infty}$	
- Indeterminate forms $0 \cdot \infty$, $\infty - \infty$, 1^{∞} , 0^{0} , ∞^{0}	
- Parametric equations (4.8)	
- Determining curve traced out by parametric equations	
 Finding parametric equations of a given curve Finding the speed and velocity of an object whose position is given by parametric equa- 	
tions	
 Finding tangent lines of parametric equations 	
Chapter 5	
• Integration	
- Left-hand and right-hand Riemann sums (5.1)	
- Computing definite integrals with geometry (5.2)	
- Computing definite integrals as areas below/above the curve (5.2)	
- Average value of $f(x)$ (5.3)	
- Interpreting Integrals (5.3)	
- The Fundamental Theorem of Calculus (Part 1) (5.3)	
- Properties of definite integrals (arithmetic, even/odd, comparison) (5.4)	
- Computing area between curves (5.4)	
Chapter 6	
• Antiderivatives and Integration	
- Graphing antiderivatives (6.1)	
- Computing indefinite integrals (6.2)	
 Computing definite integrals with antiderivatives and the Fundamental Theorem of Calculus (6.2) 	
- Solving differential equations with antiderivatives (6.3)	
- Using differential equations to describe motion (6.3)	
- The Second Fundamental Theorem of Calculus (6.4)	
Chapter 7	
- Computing indefinite integrals with substitution (7.1)	
- Computing definite integrals with substitution (7.1)	