FINAL EXAM

Math 106, Fall Semester 2011

				$Name (Print):_$			
		Student ID Number:					
				TA Name:			
Please Circle Avalos	e your professor Geisbauer	's name: Johnson	Rammaha	Rogge	Toundykov	True	
Please Circle	e your class time	e:					
7:30 a.m.	8:30 a.m.	9:30 a.m.	10:30 a.m.	11:30 a.m.	12:30 p.m	6:30 p.m.	

INSTRUCTIONS:

- There are 6 pages of questions and this cover sheet.
- SHOW ALL YOUR WORK. Partial credit will be given only if your work is relevant and correct.
- This examination is closed book. Calculators that perform symbolic manipulations such as the TI-89, TI-92 or their equivalence, are **not permitted**. Other calculators may be used. Turn off and put away all **cell phones**.

Question	Points	Score	
1	27		
2	16		
3	12		
4	14		
5	12		
6	12		
7	12		
8	18		
9	16		
10	25		
11	36		
Total	200		

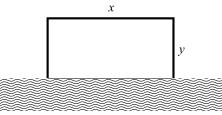
- 1. [27 Points] Evaluate each of the following: (Credit will be given only if you show work that justifies your answer.)
 - a) [9 Points] $\int_0^1 (4x + e^x 2) dx$. (Decimal approximations such as 3.4567 will not receive credit.)

b) [9 Points] $\int \left(\frac{1}{2x+1} + \cos(5x-1)\right) dx$.

c) [9 Points] $\int \frac{\sqrt{\ln x}}{x} dx.$

- 2. [16 Points] Find:
 - a) [8 Points] $\frac{d}{dx}F(x)$, where $F(x) = \int_1^{\sqrt{x}} e^{t^4} dt$.
 - b) [8 Points] f(x), if $f'(x) = \sec^2 x + \frac{1}{1+x^2}$ and f(0) = 1.

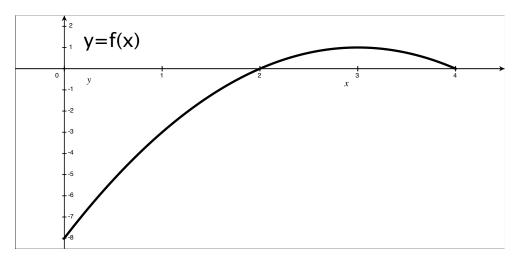
3. [12 Points] By using the limit definition of the derivative, find f'(1) if $f(x) = \frac{x}{x+1}$. Other methods for finding the derivative will not receive credit. Show all your work.


4. [14 Points] Find the equation of the tangent line to the curve $xe^{y-2} - x^4 + y^3 = 8$ at the point (1, 2).

5. [12 Points] Find the **exact** value of the following limit: $\lim_{x\to 0} \frac{x\sin x}{1-\cos x}$. (Show work that justifies your answer. Numerical and/or graphical reasoning is not sufficient and will receive no credit.)

6. [12 Points] A spherical balloon is being inflated with air at the rate of 6 ft³/min . How fast is the radius increasing when the radius is 5 ft? Remember, the volume enclosed by a spherical balloon of radius r is $\frac{4\pi}{3}r^3$.

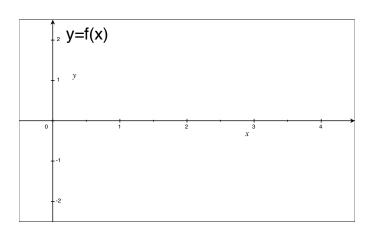
7. [12 Points] Find $\frac{dy}{dx}$ if $y = \frac{1 + \ln x}{2^x - \arcsin(5x)}$.

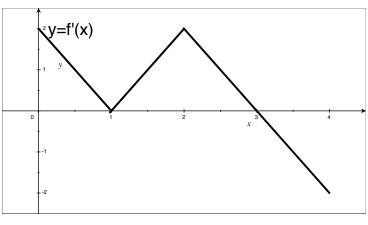

8. [18 Points] A farmer wants to fence a rectangular region adjacent to a straight river with area of $160 \,\mathrm{m}^2$. The cost of fencing is \$5 per meter for the side parallel to the river, \$8 per meter for the sides perpendicular to the river, and no fencing is needed along the river. Find the dimensions of the rectangular region that minimizes the cost of fencing.

- 9. [16 Points] Let y = g(x) be a differentiable function with g(3) = 2 and g'(3) = -1.
 - a) [8 Points] If $F(x) = g(\sqrt{4x+5})$, find F'(1).

b) [8 Points] Find the linearization of g at x=3 and use it approximate g(3.1).

10. [25 Points] (5 points for each part) Let f be a function whose graph on the interval [0,4] is as shown below. Assume it is derivative, f', is continuous on the interval [0,4]. Find the **exact** value or a reasonable approximation of each of the following: (**Note:** if an exact value can be computed, then an approximation is not acceptable).


- a) f'(3)
- b) The average rate of change of f on the interval [0,4].


c)
$$\int_0^4 f'(x)dx$$

d)
$$\int_0^4 f(x)dx$$

e) The average value of f on the interval [0, 4].

11. [36 Points] Let f(x) be a continuous function on [0,4] with f(0) = -2, and whose **derivative** f'(x) is as shown below.

a) [10 Points] Find the x-coordinates of all critical points of f in the interval [0,4] and classify them as local maximum, local minimum, or neither.

b) [10 Points] List all inflection points of f and all intervals on which f is concave up and concave down.

c) [10 Points] By using the assumption f(0) = -2 and the graph of y = f'(x) above, find f(3).

d) [6 Points] Sketch a reasonable, **but correct** graph of y = f(x) in the empty plot next to the graph of f'(x) on [0, 4]. Make sure to highlight all important features of the graph of y = f(x).