Math 106-Section 450 (Prof. Rammaha) Your Name:
Exam 3
12/5/2013
TA Name:
You must show all of your work to receive full credit!

No.	1	2	3	4	5	6	7	Total
score								

(1) (8 points) Find: $\frac{d}{d x} \int_{0}^{\cos x} e^{t^{2}} d t$.
(2) (21 points, 7 points for each part) Evaluate the following limits (If you use L'Hôpital's rule make sure to justify its use. Note, numerical reasonings won't get any credit. If the limit is $+\infty$ or $-\infty$, say so with justification):
(a) $\lim _{x \rightarrow 0} \frac{\sin (7 x)}{\tan (3 x)}$
(b) $\lim _{x \rightarrow \infty} \frac{x+3}{1+\ln x}$
(c) $\lim _{x \rightarrow+\infty} \frac{3 x+7}{e^{x}+4}$
(3) (12 points) A car is traveling at 60 mph due south at a point 4 miles north of an intersection. A police car is traveling at 50 mph due west at a point 3 miles east of the same intersection. How fast was the distance between the two car decreasing at that instant?

(4) (13 points) Assume that $y=f(x)$ is a continuous function on $[0,4]$ with $f(0)=0$ and whose derivative $y=f^{\prime}(x)$ is as shown below.

(a) (9 points) Use the Fundamental Theorem of Calculus and the graph of $y=f^{\prime}(x)$ to compute $f(4)$.
(b) (4 points) Find the average value of f^{\prime} on $[0,4]$.
(5) (8 points, 4 points for each part) Given the following information about two functions f and g :
$\int_{1}^{7} f(x) d x=2, \int_{4}^{7} f(x) d x=-4, \int_{1}^{7} g(x) d x=-1$. Find the exact value of each of the following (Make sure to show your work):
(a) $\int_{1}^{7}(5 f(x)+4 g(x)) d x$
(b) $\int_{1}^{4} f(x) d x$
(6) (10 points) Find, but don't evaluate, a definite integral whose value gives the area of the bounded region enclosed by the graphs of $y=x^{2}-4$ and $y=x+2$. Make sure to sketch the region.
(7) (28 points, 7 points for each part) Evaluate the following integrals: (Decimal approximations such as 2.1234 will not get any credit.)
(a) $\int_{0}^{1}\left(5 x^{4}+e^{x}-1\right) d x=$
(b) $\int\left(\frac{3}{1+x^{2}}+\sin (3 x+1)\right) d x=$
(c) $\int \frac{\sec ^{2} x}{3+\tan x} d x=$
(d) $\int \frac{1}{x} \sqrt{\ln x} d x=$

