REVIEW QUESTIONS-EXAM 2 MATH 104

1. Find $\frac{dy}{dx}$ for the following expressions y (do not simplify):

(a)
$$y = e^{x^2 + x} + \ln(x^3 + 1)$$
; (b) $y = (2x^3 + e^{-2x} + 3)^4$

(c)
$$y = (2x^3 + e^{-2x} + 3)^4$$
; (d) $y = \frac{e^{3x-1}}{x^{10} + 4}$

(e)
$$y = \ln 2 + 6x - e^{-2x}$$
; (f) $y = e^{2\ln(3x+7)}$

2. Find
$$f'(1)$$
 if $f(x) = \frac{3x^2 + 2}{4x - 1}$. Show all your work.

3. Solve the following equations for x:

(a)
$$2 + 2\ln(4x - 1) = 4$$

(b)
$$16^{x^2} = 4^{9x-4}$$

- 4. Find an equation of the <u>tangent line</u> to the graph of the curve $y = f(x) = e^{3(x-1)} 6x$ at the point (1, -5).
- 5 (a) Find an equation of the <u>tangent line</u> to the graph of the curve $y = \ln x^3 6x^2$ at the point (1, -6).
- (b) Find an equation of the tangent line to the graph of the curve $y = f(x) = \sqrt{3x^2 2}$ at the point (-3, 5).
- 6. (a) At what annual interest rate, compounded continuously, will \$12,000 double in value in 7 years?
- (b) How long does it take for \$2500 to triple in value at an annual interest rate of 6.35 percent, compounded continuously?
- 7. Alice invested \$10,000 in a mutual fund on March 1, 1997. On March 1, 2005, her investment was worth \$14,500. What was the annual rate of growth of this fund assuming continuous compounding?
- 8. Is the function $y = \frac{x-1}{e^x}$ increasing or decreasing at x = 1?
- 9. Find the half life of a radioactive material if after one year 99.57 per cent of the initial amount remains.
- 10. How much money should be deposited into an account paying 5.7 per cent interest compounded quarterly in order to have balance of \$12,000 five years from now?

11. Find the derivatives of the functions:

(a)
$$f(x) = \ln(x^2(x-1)^3)$$

(b)
$$f(x) = \ln(\frac{e^x}{1+e^x})$$

(c)
$$f(x) = \ln \left(e^{5x} \sqrt{e^{2x-1}} \right)$$

(d)
$$f(x) = \ln\left(\frac{(3x^4 + 2x)^5(x^2 - 7x)}{(x^2 + 8)^{1/3}}\right)$$

12. Let
$$y = f(x) = 3x^5 - 20x^3$$
 for $-\infty < x < +\infty$.

- (a) Find all critical numbers of f.
- (b) List the open intervals on which f is a decreasing function. (Hint: Chart f'(x))
- (c) List the open intervals on which f is an increasing function.
- 13. Let $y = x 3\ln(4x 6)$ for x > 1.50.
- (a) Find all critical numbers of f.
- (b) List the open intervals on which f is a decreasing function and the intervals on which f is an increasing function.
- 14. If Josh wants to have \$22000 to buy a new vehicle after graduation on May 8, 2010, how much does he need to invest on May 8, 2006 into a certificate of deposit paying 5.75 per cent interest compounded quarterly? (Round off your answer to the nearest cent).
- 15. If a radioactive substance has a half life of 23 years, how much of a 40 gram mass will remain after 36 years? (Round off your answer to the nearest hundredth of a gram).
- 16. Suppose that the cost and revenue functions for a certain product are given by $C(x) = 5.4x .0003x^2$ and $R(x) = 9.7x .002x^2$, respectively. Determine where the profit function is increasing.