FINAL EXAM REVIEW-MATH 104

1. Find $\frac{dy}{dx}$ for the following expressions y (do not simplify):

(a)
$$y = \frac{x^2 - 8x}{3 - 2x}$$
 (b) $y = e^{x^2 + 1} \ln(x^2 + 4)$

(c)
$$y = e^{x^2+1} \ln(x^2+4)$$
 (d) $y = (6x + e^{-3x})^{10}$

- 2. Solve the following equations for x:
- (a) $3 + 2e^{4x-5} = 17$ (b) $-5 + 2\ln(3x+4) = 1$
- 3. Find an equation of the tangent line to the graph of the curve $y = f(x) = (x^2 8)^4$ at the point (3,1).
- 4. Evaluate the following limits:

(a)
$$\lim_{x\to 1} \frac{2x^2 + 5x - 7}{3x^2 - 8x + 5}$$

(b)
$$\lim_{x\to+\infty} \left(6 + \frac{2x^2 - 8}{3 - x^2}\right)$$

- 5. Find all <u>critical numbers</u> and all inflection points on the graph of $f(x) = x^2 \ln(x)$.
- 6. Let $y = f(x) = x^2 + 6x$.
- (a) Find dy when x = 2 and dx = .25
- (b) Find Δy when x = 2 and $\Delta x = .25$
- 7. Is the function $f(x) = \frac{e^x}{r}$ increasing or decreasing at $x = \frac{1}{2}$? Explain why.
- 8. Let y = f(x) be a function such that $f''(x) = x^2(x+4)(x-2)$ for all $x \in (-\infty, +\infty)$.
- (a) List the open interval(s) where the graph of f is concave up.
- (b) List the number(s) x where (x, f(x)) is a point of inflection on the graph of f.
- 9. How much money should Barbara invest on May 3, 2006 at an annual interest rate of 4.92 per cent, compounded continuously, in order to have \$42,500 on May 3, 2018? (Round off your answer to the nearest cent).
- 10. Assume that for some commodity, the <u>price elasticity of demand</u> E is given by the formula $E = E(p) = \frac{2p^2}{108 p^2}$, 0 units.

Is the demand <u>elastic</u> or <u>inelastic</u> when p = 5? For what value of p is the revenue maximized?

11. Given the cost function $C = C(x) = x^2 + 20x + 900$ dollars, use <u>calculus methods</u> to determine the number of units x that should be produced in order to <u>minimize</u> the <u>average cost</u> per unit.

- 12. (a) Approximate the area under the graph of $y = \frac{1}{1+x^2}$ on the interval [0,4] with n = 4, using left endpoints.
- (b) Do the same thing for $y = e^{x^2}$ on the same interval as (a) but using right endpoints.
- 13. Kelly invested \$12,000 in a mutual fund on May 3, 1997. On May 3, 2006 her investment was worth \$22,500.
- (a) What was the annual rate of growth of this investment, assuming continuous compounding?
- (b) If this mutual fund continues to appreciate at the same rate, how much will her investment be worth on May 3, 2015?
- 14. If a material has a half-life of 17 years, how much of a 40 gram mass will remain after 55 years? (Round off your answer to the nearest hundredth of a gram).
- 15. Find the following antiderivatives:

(a)
$$\int \left(6(x+1)^{-\frac{2}{5}} + \frac{1}{(x+2)^{10}}\right) dx$$
 (b) $\int x^2 (2-3x^3)^{\frac{3}{2}} dx$

- 16. Evaluate the following definite integrals:
- (a) $\int_0^2 \left[x^2 e^{3x} \right] dx$

(b)
$$\int_{1}^{3} \left(1 + \frac{2}{x}\right) dx$$

17. If
$$\int_0^{10} f(x) dx = 12$$
 and $\int_4^{10} f(x) dx = -3$, evaluate the definite integral $\int_0^4 5f(x) dx$.

- 18. Let $p = D(q) = 40 q^2$ dollars be the <u>demand</u> function and let p = S(q) = 2q + 5 be the <u>supply</u> function for some commodity.
- (a) Find the equilibrium point (q_0, p_0) .
- (b) Find the Consumer Surplus.
- 19. Use the <u>substitution method</u> to evaluate the definite integral:

$$\int_0^2 \frac{x}{\sqrt{6x^2+1}} dx.$$
 Clearly identify what substitution u you are using and show all your work.

20. Use the <u>substitution method</u> to evaluate the definite integral:

$$\int_0^3 \frac{x^2}{x^3 + 1} \, dx.$$

- 21. Let R be the region enclosed by the curves $y = 5 x^2$ and y = x + 3.
- (a) Sketch a graph of the region R.
- (b) Express the area of the region R as a definite integral. (Do not evaluate this integral.)