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Chapter One

Circuits

(... introduction here ... )

1.1 CIRCUIT BASICS

Objects may possess a property known as electric charge. By convention, an
electron has one negative charge (—1) and a proton has one positive charge
(+1). In the presence of an electric field, the electromagnetic force acts on
electrically charged objects, accelerating them in the direction of the force.
We denote by @ the net positive charge at a given point of an electrical
circuit. Thus @ > 0 means there are more positive charged particles than
the negatives ones, whereas () < 0 means the opposite. Through a point
of (or an imaginary plane with a fixed direction that is perpendicular to) a
circuit, @ may change (or flow) with time and we denote it by Q(¢) with ¢
being the time variable. By definition, its rate of change (or the fluz through
the plane in the direction of the imaginary plane) is defined as the current
dq
1= e (1.1)
In reality though, it is usually the negative charged electrons that actu-
ally move. In such cases, the net ‘positive’ charge ¢ would move opposite
to the actual direction of the free electrons. Electric charges can move in
one direction at one time and the opposite direction at another. In circuit
analysis, however, there is no need to keep track the actual direction in real
time. Instead, we only need to assign the direction of the current through a
point arbitrarily once and for all (or to be the same direction as the imagi-
nary plane through the point and perpendicular to the circuit). Notice that
this assignment in turn mutually and equivalently designates the reference
direction of the movement of the net positive charge ). In this way, I > 0
means the net positive charge @ flows in the reference direction while I < 0
means it flows in the opposite direction. Again, in most cases, free electrons
actually move in the oppositive direction of I when I > 0 and the same
direction of I when I < 0. To emphasize, we state the following rule.

Rule of Current Direction Assignment:

The reference direction of the current through a point or an elec-
trical device of a circuit is assigned arbitrarily and kept the same
throughout the subsequent analysis of the circuit.



W

Inductor
_ rdl
V=L

——

Capacitor
V=24Q

REUNotes08-CircuitBasics May 28, 2008

2 CHAPTER 1

This does not mean that all assignments are equally convenient. In prac-
tice, some assignments make the analysis easier than others. Fundamentally,
however, all choices are equally valid and equivalent.

Between two points in an electric field, we envision the existence of a
potential difference, and the field to be the result of the gradient of the
potential. More precise, the electric field is the negative gradient of the
potential. The potential difference, measured in voltage, or volt, can be
thought as “electric pressure” that push electric charges down the potential
gradient. However, we do not need to keep track of the actual potential,
but instead use the reference direction of the current to define the reference
voltage. More precisely, at a given point of a circuit, the side into which the
reference direction of the current points is considered to be the high end of
the potential whereas the other side from which the current leaves is the low
end of the potential. Hence, I > 0 at the point if and only if V' > 0 with V
denoting the voltage across the point.

The case with V = 0 is special — it represents a point on an ideal con-
ductor without resistance. Here below, however, we will consider various
elementary cases for which the mutual dependence between V' on I, which
we refer to as the I'V-characteristic curve or /V-characteristic, is not
this trivial kind.

By device in this chapter, we mean an inductor, or a capacitor, or resistor,
which are uniquely defined by their I'V-characteristics.

An inductor is an electrical device that stores energy in a magnetic field,
typically constructed as a coil of conducting materials. The voltage across
an inductor with inductance L with the current through it is described by

the equation
dI

V=L I (1.2)
It is the I'V-characteristic of inductors. In one interpretation, a positive
change of the current results a voltage drop across the inductor. Alterna-
tively, a potential difference either accelerates (when V' > 0) or decelerates
(when V' < 0) the positive charge @ through the inductor. It is this IV-
characteristic that allows us to model processes and devices as an inductor

even though they are not made of coiled wires.

A capacitor is another electrical device that stores energy in the electric
field. Unlike an inductor, it does so between a thin gap of two conducting
plates on which equal but opposite electric charges are placed. Its capac-
itance (C) is a measure of the conducting material as to how much of a
voltage between the plates for a given charge

V =CaQ. (1.3)
Since the rate of change in charge is the current I = %, we also have
av. _dQ o7

dt dt



%

Resistor
V = RI or
I1=GV

%

Variable Resistor
g(V,I)=0
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which can be considered to define the IV -characteristic of the capacitor.

A word of clarification is needed for capacitors. For a given direction of
the current I, the side that I goes into a capacitor is the “positive” side of
the capacitor, and the voltage is fixed by the relation V' = Q/C with @ being
the “net positive” charge. It means the following, let Q be the net positive
charge on the positive side of the capacitor and (4 be net the positive
charge on the opposite side of the capacitor, then @ = Q* — Q.. In this
way, the current “flows” from the “net positive” charged side of the capacitor
plate to the “net negative” charged side of the plate. In reality, however no
actual charges flow across the plates which are insulated from each other.
Instead, positive charges are repelled from the “net negative” charged side
or equivalently negative charges are attracted to the “net negative” charged
side, giving the effect that it is as if the current “flows” across the plates.

A resistor is an electrical device that is used to create a simpler voltage-
to-current relationship. It has two broad categories: linear and variable
resistors. A linear resistor has a constant voltage to current ratio, the resis-
tance R, by the Ohm’s law

V = RI (1.4)

Alternatively, a resistor is also referred to as a conductor, with the conduc-
tance

G = % and I = GV. (1.5)

For a variable resistor, however, the relationship between V and I is nonlin-
ear in general. There are three cases. For one case, V' is a nonlinear function
of I, V.= f(I), often referred to as a variable (or nonlinear) resistor. For

I I
I1=GV)

RI=V

Vv 4

linear characteristics nonlinear characteristics

another case, I is a nonlinear function of V', I = f(V), referred to as a vari-
able (or nonlinear) conductor. For the third category, neither V' nor I can
be expressed as a function of the other, but nonetheless constrained by an
equation, F'(V,I) = 0. The corresponding curve defined by such an equation
is still called the I'V-characteristic the nonlinear resistor (or nonlinear resis-
tive or passive network as referred to in literature). It can also be thought as
the level curve of F' = 0. Notice that the first two cases can also be expressed
as F(V,I) =4[ — f(V)] or F(V,I) =4[V — f(I)] with the exception that
either I or V' can be solved explicitly from F(V,I) = 0.

A linear resistor is characterized by its resistance R, which is the constant,
positive slope of the I'V-characteristic curve. Heat dissipates through the
resistor resulting the potential drop in voltage. The situation can be different
on a nonlinear resistor. Take the nonlinear I'V-characteristic curve, I =
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Quantity Unit Conversion

Elementary Charge 1 elementary charge
= the charge of a single electron (—1)
or proton (+1)
Charge Q@ coulomb (C) 1C = 6.24 x 10'8
elementary charges

Current I = %it) ampere (A) 1A =1C/s (s = second)

Potential Difference V or E volt (V) 1V =1 Newton-meter per C
Inductance L  henry (H) 1H=1Vs/A
Capacitance C' farad (F) 1F=1C/V
Resistance R~ ohm € 1Q=1V/A

Conductance g = 1/R  siemens (S) 1S=1A/V

f(V), shown as an example. It has two critical points that divide the V-axis
into three intervals in which I = f(V) is monotone. In the voltage range
defined by the left and right intervals, the slope of f is positive. As result,
the device behaves like a resistor as expected, dissipating energy. However,
in the voltage range of the mid interval, the slope of f is negative. It does
not behave like a resistor as we think it would — a faster current results in a
smaller voltage drop. That is, instead of dissipating energy, energy is drown
to the device, and hence the circuit that it is in. In electronics, nonlinear
resistors must be constructed to be able to draw and store energy, usually
from batteries.

Useful Facts about Elementary Devices:

® For each device, we only need to know one of the two quantities, the cur-
rent or the voltage, because the other quantity is automatically defined
by the device’s I'V-characteristics (1.1-1.5).

® Once the direction of a current is assigned, the corresponding voltage is
automatically fixed by the device relations (1.1-1.5).

® The change of voltage and current through an inductor and capacitor
are gradual, transitory in time.

® In contrast, the relationship between the voltage and current across a
resistor is instantaneous, at least for an idealized resistor or conductor.

e Unit and conversion for these basic devices are given in the company
table. As an example for interpretation, consider the unit of voltage.
According to its unit, one can visualize that one volt is the amount of
energy that is required to move one coulomb of charge by a force of one
Newton for one meter.

Exercises 1.1
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1.2 KIRCHHOFF’S LAWS

In a circuit, the voltage and current across a given device change with time.
As functions of time, they satisfy a set of differential equations, which in
turn are considered as a mathematical model of the circuit. All equations
are based on two laws of conservation, one for the conservation of energy
— Kirchhoff’s voltage law, and the other for the conservation of mass —
Kirchhoff’s current law.

Kirchhoff’s Voltage Law

The directed sum of the electrical potential differences around a
circuit loop is zero.

Kirchhoff’s Current Law

At any point of an electrical circuit where charge density is not
changing in time, the sum of currents flowing towards the point
is equal to the sum of currents flowing away from the point.

Remark.

1. Two devices are connected in series if the wire connecting them does
not branch out in between and connect a third device. As one immediate
corollary to Kirchhoff’s Current Law, the current through all devices in
a series is the same. This negates the need to assign a current to each
device in a series.

4]{device 1} ! }deviceZ} !

2. Although individual devices in a circuit loop can be assigned arbitrary
current directions, and their voltages are thus fixed thereafter by the for-
mulas (1.1-1.5), the “directed sum” stipulation in Kirchhoff’s Voltage
Law does not mean to simply add up these arbitrarily defined voltages. It
means the following. We first pick an orientation for the loop, for exam-
ple, the counterclockwise direction. We then either add or subtract the
voltage V' of a device in the “directed sum”. It is to add if V’s current
direction is the same as the orientation of the loop. It is to subtract if the
current direction is against the orientation of the loop. Two examples are
illustrated below. For the left loop, the currents through the V; devices
with voltage V; are implicitly taken to be the same counterclockwise ori-
entation of the loop. In contrast, each device from the right loop is given
an individual reference direction of its current.
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Voltage Law: Vi+Vo+Vs+ V=0 —Vi4+Vo+ V3 -V =0

3. Voltage Additivity in Series. As an immediate corollary to the Volt-
age Law, the voltages over devises in series are additive. That is, if
Vi, Vo, ..., V, are voltage drops across devices 1,2...,n, then the volt-
age drop V over all devices is

V=Vi+Vat - +V,.

The diagram below gives an illustration of the required argument.

=
N

Voltage Law: —V3 — Vo +V =0o0r V =V} + V3

We wire a resistor with infinite resistance R = oo in parallel with the
serial devices as shown. The new wire draws zero current from the existing
circuit. By Kirchhoff’s Voltage Law (and the previous remark), we see
that the voltage across the infinite resistor is the numerical sum of the
existing serial voltages.

Because of the second last remark, we can fix the direction of a device in
a circuit as follows for convenience and definitiveness.

Current Direction Convention:

Unless specified otherwise, the following convention is adopted:

® [f a circuit consists of only one loop, then all device currents
are counterclockwise oriented.

® [f a circuit consists of a network of parallel loops, all device
currents in the left most loop are counterclockwise oriented.
Device currents of subsequent addition to the existing loop
that forms the new loop are counterclockwise oriented as
well.

Remark. Useful tips to note: the current of a device that is in two adjacent
loops is counterclockwise oriented with respect to the left loop but clockwise
oriented with respect to the right loop. Its voltage takes different signs in
the directed sums of the loops.

Example 1.2.1  According to the Current Direction Convention, the cir-
cuit below has three equations by Kirchhoff’s Laws as shown.
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Voltage Law:
left loop: Vi + Vo + V3 +Vy =0
right loop: —Va + V5 4+ Ve + V7 =0

Current Law:

top and bottom nodes: I2 = I3 + I5

Notice that both the top and bottom node points give rise to the same
equation of currents by the Current Law because I = [} = I and [; =
Ig = I.

Exercises 1.2

1. In each of the circuits below, label appropriate currents, use Kirchhoff’s
Current Law and Voltage Law to write the equations governing the volt-
ages and the currents through the devices.

IOTOE 0 s

(a) (b)
2. In each of the circuits below, label appropriate currents, use Kirchhoff’s
Current Law and Voltage Law to write the equations governing the volt-
ages and the currents through the devices.

> /V\A/;

MWy

(b)

1.3 CIRCUIT MODELS

Circuit analysis is to study how devices currents and voltages change in a
circuit. The main reason why a circuit can be completely understood is
because of the following principles.

® Each device has only one independent variable, either the current or the
voltage, and the other is determined by the device relations (1.1-1.5).

® [f a circuit has only one loop, then all the devices are in series, and we
only need to know the current variable. Since the circuit loop gives rise
to one equation from the Voltage Law, we should solve one unknown
from one equation.
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® [f a circuit has two parallel loops, such as the circuit diagram of Exam-
ple 1.2.1, then there are three serial branches—Ileft, middle, and right
branches—each is determined by its current variable, or one device volt-
age variable in general. However, the node points give rise to only one
independent equation from the Current Law, and each loop gives rise to
one equation from the Voltage Law. Together we have three equations
for three variables, and it is solvable in principle.

® The same argument above applies to multiple parallel loops.

To illustrate these principles, we consider the following examples for which
only the equations as mathematical models of circuits are derived. The
equations inevitably contain derivatives of variables. Such equations are not
algebraic rather than differential equations. Methods to solve the differential
equations are considered in later sections.

LINEAR CIRCUITS

Example 1.3.1 RLC Circuit in Series. Consider the RLC' circuit as
shown. We only need to know the current variable /. From the Voltage Law
we have

VR+VL+Ve—-E=0,

with the subscript of the voltage V; corresponding to the devices (R for the
resistor, L for the inductor, and C' for the capacitor). Since batteries have
a designated positive terminal, its corresponding current is fixed as well.
Thus, in this case it is opposite the reference current direction chosen, and
hence the negative sign of E in the directed sum equation. In principle, this
equation together with the device relations (1.1-1.5),

I 1 dQ
a0 Ve=gt@ an

VeR=RI, VL =L it
completely determines the circuit.

However, circuit analysis does not stop here. We usually proceed to re-
duce the number of equations as much as possible before we solve them by
appropriate methods for differential equations.

To illustrate the point, we express all voltages in terms of the current I
by the device relations and substitute them into the voltage equation. More
specifically, we first have

I
Lillt—i—RI—l— ~Q=E. (1.6)

Differentiating the equation above in ¢ yields,

d*1 dr 1 dE
L— +R—+=1= 1.
dt? R dt C dt (17)

Alternatively, (1.7) can be directly expressed in term of @ as

159, i

I dt+ Q L. (1.8)
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Either of the last two equations models the circuit mathematically. They
are now ready to be solved by appropriate methods for differential equations

which is a different issue from the model building completed above.
®

We note that the equation above is a second order, linear, ordinary
differential equation(ODE). The term “order” refers to the highest deriva-
tive taken in the equation. The term “linear” refers to the fact that the
expression on the left side is is a linear combination of the unknown I in
derivatives: d?I/dt?, dI/dt,I. The term “ordinary” is given to equations for
which the unknown is a function of only one variable. If an equation has
an unknown which is a function of more than one variables and contains
partial derivatives of the unknown, then it is called partial differential
equation. We will discuss numerical methods to solve differential equations
in later sections.

Example 1.3.2 RLC Circuit in Parallel. Consider the RLC circuit in
parallel as shown. By the Current Law, we have

Ip =1+ I¢,
for both points. By the Voltage Law, we have
Ve+Vy,—FE=0and Vg -V, =0
for the left and right loop respectively.

Like the previous example, we can derive a second order, linear ODE of
the inductor current Iy, for the circuit, which is left as an exercise. Here we
derive alternatively a system of two equations of two variables, Vo and Ir,.

From the capacitor relation Vo = Q/C, the current definition d@/dt = I¢,
and the node point current equation Io = Ir — I}, we have

Ve 1 1

= glo=5r—10). (1.9)

Replacing I by the resistor relation Ir = Vg/Rand Vg = E—V, = E—- V¢
from both loop voltage equations gives rise to the first equation

dVe 1 /1

— == =(F — —1Ir ).

Pl < R( Vo) L)

From Vo = Vi, of the right loop and the inductor relation LdIy, /dt = V7,
we have the second equation

I,
L— =V¢.
at ¢
Together, we have obtained a system model of the circuit
dV 1
CWC = E(E -Ve) -1
il (1.10)
L=t =V
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Figure 1.1 (a) van der Pol circuit. (b) I'V-characteristics.

(¢) FitzHugh-Nagumo circuit.

©

The main difference between Eqs.(1.7, 1.8) and Eq.(1.10) is that the former
are second order equations whereas the latter is a system of two first order
equations. Geometric and numerical methods work the best for systems of
first order equations. For this reason, all higher order ODEs are converted
to systems of first order ODEs before geometric and numerical methods are
applied. ®

NONLINEAR CIRCUITS

Circuits above contain only linear resistors. We now consider circuits with
nonlinear resistors (or conductors).

Neuron Circuit Current Convention.

Unless specified otherwise, all reference directions of electrical
currents through the cell membrane of a neuron are from inside
to outside. All circuit diagrams for neurons are placed in such a
way that the bottom end of the circuit corresponds to the interior
of the cells and the top end to the exterior of the cell.

Example 1.3.3 van der Pol Circuit. The circuit is the same as the RLC
parallel circuit except for a nonlinear resistor, both are shown in Fig.1.1.
For the nonlinear conductance g, we use the following polynomial form for
the nonlinear resistive characteristics

I=FV)=V(@V?+bV +c¢)) +d, (1.11)

where a > 0, b, ¢, d are parameters.
Applying Kirchhoff’s Voltage and Current Laws, we have

Ve—FE-V,=0,V, -Ve=0, Ic +Igr+ I, =0. (1.12)

From the capacitor and current relation Vo = Q/C,dQ/dt = I, and the
equations above, we have
dVe 1 1

:_IC:

— =0 6(—]3—[[,). (1.13)
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Replacing Ir by the nonlinear resistor relation I = F(Vg) and Rgr by
Ve =E+V, = E+ Ve from Eq.(1.12) gives rise to the first equation

dV
Od—tc = —F(E—FVc) —1Ir.

From Vo = Vi, of Eq.(1.12) and the inductor relation LdIy/dt = Vi, we
have the second equation
dIp,

LE =Vc.

Finally, we have the model system of equations

d
O% =-FE+Ve)-1g

o (1.14)
L —
L= =Ve.

©

Example 1.3.4 FitzHugh-Nagumo Circuit. The circuit is the same
as the van der Pol circuit except that a linear resistor is in series with the
inductor as shown in Fig.1.1. The nonlinear conductance g has the same
form as van der Pol’s circuit.

It is left as an exercise to derive the following system of equations for the
circuit, referred to as FitzHugh-Nagumo equations.

AV
C—F=—FE+Ve) I

o (1.15)
L—L — v, - RI;.

dt ¢ L ®

Notice that the only difference from the van der Pol equations is on the
right hand side of the second equation. As result, the van der Pol equations
is a special case of the FitzHugh-Nagumo equations with R = 0. For this
reason, the latter reference will be used often. Another reason that will
become apparent later is because FitzHugh-Nagumo equations are better
suited for a class of neuron circuits.

ForCED CIRCUITS

The circuits considered so far are “closed” networks of devices. In applica-
tions, they may be a part of a larger circuit, having their own incoming and
outgoing ports through which connections to the larger circuit are made.
The current going into the compartment is thus considered as an external
forcing. The circuit including the two ports is therefore considered as a
forced circuit of the closed one without the interphase ports.

Example 1.3.5 Forced FitzHugh-Nagumo Circuit. The circuit is the
same as the FitzHugh-Nagumo circuit except for the additional I, and I,
branches as shown in Fig.1.2. It is left as an exercise to show that

Iin = —lout = _(Ig +IR+IC)
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Figure 1.2 Forced FitzHugh-Nagumo circuit.

It is also left as an exercise to derive the forced FitzHugh-Nagumo
equations for the circuit,

AT
Cd—tc =-—F(E+Ve)—1Ip— I
e (1.16)
L
L— =Veo — RIyp.
dt C L

We will also interchangeably refer to it as FitzHugh-Nagumo equations be-
cause the closed circuit version corresponds to the case when I;, = 0.

©

Exercises 1.3

1. Show that the equation for the RLC' circuit in parallel from Example
1.3.2 can also be written as the following second order, linear, ODE,

d*1y, dly,
L— + RI;, = E.

az g T

2. Use the current relation dQ/dt = I to transform the equation Eq.(1.6)
for the RLC serial circuit into a system of two first order ODEs.

3. Derive the FitzHugh-Nagumo equations (1.15).

4. Show that for the forced FitzHugh-Nagumo circuit from Fig.1.2, I;, =

RCL

—Lout-
5. Derive an ODE for the RC circuit shown. The nonlinear conductance g
is given by the I'V-characteristics I = F(V).
6. Derive the forced FitzHugh-Hagumo equations (1.16).
7. Show the forced FitzHugh-Nagumo equations (1.16) can be transformed
into the following second order, nonlinear ODE;
d?Iy, dly, 1 dly,

1 1
+R=E 4+ I+ —~F(E+L—=%+RI) = — =T

L
dt? a C C dt C
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1.4 EQUIVALENT CIRCUITS

A circuit is a network of devices. If we are only interested in a current,
I;n, that goes into the circuit at one point, called the input node, another
current I,,¢, that come out at another point, called the output node, and
the voltage drop between these points, Vi, out, then whatever happen in
between is not important. Loosely speaking, two circuits are equivalent if
they are interchangeable between the input and output node points without
altering the quantities Iiy, Iout, Vin,out-

Example 1.4.1 A set of n linear resistors in series is equivalent to a resistor

whose resistance is equal to the sum of individual resistors resistance Ry, k =
1,2,....n.
W =
R, R, R, R

A verification follows from the property of Voltage Additivity in Series
from the remarks after Kirchhoff” Voltage Law in Sec.1.2 that the voltage
drop across devices in series is the sum of individual devices voltage. In
particular, the input and output currents I;,, I, are the same, I. Since the
voltage drop across all resistors is

V=Vi+Va+ - 4+V,=RiI+RyI+---R,J=(Ri+Ras+---+ Rp)I,
it is equivalent to one resistor of the resistance
R=Ri+Ra+- -+ Ry.

Example 1.4.2 A set of n linear inductors in parallel is equivalent to an
inductor whose resistance in reciprocal is equal to the sum of individual
inductors inductance in reciprocal: % = Ll—l + L1—2 4+ 4+ Li

i i i
Lin ! 2 2o Lot iy L out
€1 €1 €1 €1
I, I, I, = 3

By the Current Direction Convention and Kirchhoff’s Voltage Law, we
have

for the equivalence conditions for voltages, with the first equation from the
left most loop, the second equation from the second left loop, etc. The last
equation is the condition for an equivalent inductor. Let i,k =1,2,...,n—1
be the currents running on the top edges of the n — 1 loops. Then, by
Kirchhoff’s Current Law, we have
Iin + I = i1, ik = Ipy1 + ik, -1 = In + Lout,

with the first equation from the top left node, the (k + 1)th node from left,
and the nth or the last node. Use the formulas recursively, we have

Liy=—-h+iu=-h+h+ti=-=-hL+l+- -+ L+ lout



REUNotes08-CircuitBasics May 28, 2008

14 CHAPTER 1

Since for the equivalent circuit we have
Ly = I + Lout,
we must have
I=-L+L+ --+1,
as the equivalence condition for current. Differentiating this equation in

time, and using the device relations dly/dt = Vi /Ly, we have

1 1 1 1
V= Vit Vot —Vp

L Ly Lo L,
Since V=V, for £k > 2 and V = —Vj from the equivalence conditions for
voltages, we have
1 1 1 1
Vo= — = 4.V
L Ly * Lo T L,

Canceling V' from both sides yields the equivalence condition for the induc-
tance.

©

Equivalent Nonlinear Conductors. For linear devices, the equivalent
characteristics can be expressed in simple algebraic relations. For nonlin-
ear devices, it is usually not as simple. However, the principle reason why
equivalence exists at all is the same. It all depends on Kirchhoff’s Voltage
and Current Laws.

Consider two nonlinear resistors in parallel as shown with I'V-characteristics
g1(V,I) =0 and g2(V, I) = 0 respectively.
i
1 1

1 1

in out in out

gl = g

By Kirchhoff’s Voltage Law, Vi = V,. By the voltage equivalence condition,
Vi=W=V. (1.17)

By Kirchhoft’s Current Law, I;, + I; = ig and ig + I = I,,:. Eliminating
10, Lin + 11 + I3 = I,y:. By the current equivalence condition, I;, +1 = Iy.
Together, they imply

I=1+1I. (1.18)

Equations.(1.17, 1.18) mean the following. For a given voltage V', if I; and
I are corresponding currents on the resistors in parallel, g, (V, I;) = 0,k =
1,2, then the current I on the equivalent nonlinear resistor, g(V,I) = 0,
must be the sum of I} and I>. Geometrically, all we have to do is for every
pair of points (V, 1), (V, I3) from the constituent IV-curves, plot the point
(V, I1 + I2) on the same vertical line V' = V in the plane to get the equivalent
IV -characteristic curve.

There are two ways to do this.
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Example 1.4.3 Example 1.4.4

Figure 1.3 Graphical Method for equivalent resistors of resistors in parallel.

METHODS OF DERIVING EQUIVALENT IV -CHARACTERISTICS IN PARALLEL

Graphical Method. This method will produce the equivalent I'V-characteristics

for two resistors in series or in parallel as long as the constituent IV -curves

are given. Illustration is given for the parallel equivalent resistor case, and

the serial case is left as an exercise.

Example 1.4.3 Consider two nonlinear resistors in parallel with their
nonlinear IV-characteristics Fy (V,I) = 0, F»(V, I) = 0 as shown. For clarity,
piecewise linear curves are used for both curves. The problem is to place the

point (V,I; + I5) graphically on each vertical line V' = V which intersects

the constituent I'V-curves, i.e. Fy(V,I;) =0, F»(V,I3) = 0.
Here are the steps to follow.

® Step 1. Plot both constituent IV-curves in one I'V-plane. Draw the

diagonal line I =V in the plane (the line through the origin with slope
m=1).

Step 2. Locate all critical points of the constituent IV -curves. A point
is critical if it is not a smooth point of the curve, or it has a horizontal
tangent line, or a vertical tangent line. Any point at which the curve
changes its monotonicity in either I or V direction is a critical point.
Step 3. To fix notation, let (V,I1), (V, I2) be a pair of points from the
Fy and F5 characteristic curves respectively, i.e., F(V, ) = 0, so that
one of the two is a critical point and both are on the same vertical line
V = V. The method now proceeds in sub-steps that are numbered
as illustrated. For example, start at the critical value V labelled as *.
Choose one of the two constituent IV -curves we want to start. Our
illustration takes F} as an example. Draw a vertical line from % to the
graph Fj. If there are multiple intersections, do one intersection at a
time. In sub-step number 2, draw a horizontal line from the intersection
to the I-axis. From the intersection, draw a line parallel to the diagonal
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to complete sub-step 3. Sub-step 4 starts from the critical point * again,
and do the same for the other IV-curve, F5 = 0 for the illustration. Sub-
step 7 draws a horizontal line to intersect the vertical line V' = V. The
intersection point is (V, I + I2).

Step 5. Repeat the same procedures for all critical points, and two far
end “anchoring” points chosen arbitrarily.

Step 6. Since the sum of two lines is another line, (here is the algebra:
(b1 + mix) + (ba + maz) = (b1 + b2) + (m1 + ma)z), we now connect
the “dots” which are produced branch by branch. The resulting curve
is the exact equivalent I'V-characteristics. If the constituent I'V-curves
are not lines, we only need to “smooth” the dots to get an approzimate
of the equivalent curve, which is often sufficient for qualitative purposes.

©

Example 1.4.4 Figure 1.3 shows another example of the equivalent V-
characteristics for two nonlinear resistors in parallel. Again, the equivalent
curve is constructed by the graphical method. A noncritical point is used to

illustrate the steps which are not numbered.

Example 1.4.5 The graphical method can be extended to
nonlinear resistors in series. Let the IV -characteristics of non-
linear resistors be Fy (V,I) = 0, F5(V, I) = 0 respectively. Then
it is similar to argue by Kirchhoff’s Current Law that for each
fixed current I, if V7, V5 are the voltages on the two constituent
characteristics, i.e., F(Vj,I) = 0,k = 1,2, then the equivalent
resistor’s characteristics must be V= 17 + V5 for the same
current level I. To locate the equivalent voltage V = V; + Vs,
we only need to interchange vertical and horizontal construct-
ing lines in the graphical method illustrated above for nonlin-
ear resistors in parallel. The figure gives an illustration of the
graphical method.

©

Analytical Method.

® If each I can be written as a function of V, I, = f;(V), then the

equivalent characteristics is simply

I'=f(V)+ fo(V)=f(V).

® Suppose I; can be written piece by piece as a set of n functions of V,

I = fx(V),1 < k <mn, and I can be written piece by piece as a set
of m functions of V, In = ¢;(V),1 < j < m. Then the equivalent
characteristics can be pieced together by no more than mn functions of
V,I=fu(V)+gj(V)fork=1,2,...,nand j =1,2,...,m. The single
functions case above is just a special case.
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Example 1.4.6 Consider two nonlinear resistors in parallel whose I'V-
characteristics g1, go are as shown. For g;, I; can be written piecewise as

1
F1=0 - 1, for V<1
J_,;_O Li=a:1(V) = { 2V —1, forV>1. (1.19)
_ - v For go, I5 can be written piecewise as
Fy=0 B R for V<0
I = g2(V) = { —V, forV >0. (1.20)

The equivalent characteristic g can be put together with no more than 2x2 =
4 pieces. In fact, in the interval (—oo, 0], the piece of fo overlaps the left
component of f;, eliminating one unnecessary combination with the right
component. The equivalent characteristics in that interval is [ = I; + I, =
140 = 1. For the remaining interval [1, c0), the right piece of f overlaps with
both pieces of f; in range. Hence we break it up into two pieces, one over the
interval [0, 1] and the other [1,00). In the mid interval, I =1 + I, =1-V,
and in the right interval, I =1 + 1o =2V —1 -V =V — 1. To summarize,
we have
1, for V<0
I=¢g(V)=<¢ 1=V, for0<V <1 (1.21)
V-1, forl1<V.

The equivalent I'V-curve consists of the dotted lines.

We note that this method can be implemented computationally.

In general, there is no method to write down the equivalent I'V-characteristic,
F(V,I) =0, for a parallel or serial network of resistors whose I'V-characteristics
are implicitly defined. However, this can be done for some special cases. For
example, if one resistor’s I'V-curve is given implicitly as F;(V,I) = 0 and
another resistor’s IV-curve is given explicitly with I as a function of V:

I = f3(V). Then, the equivalent I'V-characteristic F'(V,I) = 0 for the two
resistors in parallel is

F(V.I)=F(V.I- f(V)) =0,

where I = I} + Iy with Iy = fo(V) and F1(V,I;) = 0. This is left as an
exercise to the reader.

Exercises 1.4

1. Show that a set of n inductors in series with inductance Ly, k =1,2,...,n
is equivalent to an inductor whose inductance is the sum of individual
inductors inductance.

L L L B L
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. Show that a set of n resistors in parallel with conductance Gy, = 1/ Ry, k =
1,2,...,n is equivalent to resistor whose conductance is the sum of indi-
vidual resistors conductance.

iy iy i,
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. Show that the following circuits are equivalent in the sense that both have
the set of equations. That is, the order by which circuit loops are laid out
is not important. (When electrons moves in a circuit, it follows physical
laws of energy conservations, not arbitrary order of circuit paths we lay
out on a planar diagram.)

R L C C R L

+

E = E=
For the following problems, label the sub-steps in constructing one crit-

ical point of your choice.

. Use the graphical method to sketch the equivalent I'V-characteristics of

Example 1.4.6.

. Use the graphical method to sketch the equivalent IV -characteristic curve

of two resistors in parallel whose IV -characteristic curves are as shown.

. Use the graphical method for serial nonlinear resistors to sketch the

equivalent I'V-characteristic curve of two resistors in series whose IV-

characteristic curves are as shown.

[ F1:O !
F

F2:O

Problem 5 Problem 6

7. For problem 5 above, if Fy(V,I) =V — I(I?> + 41 + 5) and Fy(V,I) =

V2 + I, find the function form F(V,I) so that F(V,I) = 0 defines the
IV -characteristic of the equivalent resistor with F}, F5 in parallel.




