Horseshoe Map Theorem

Let Q = [0,1] x [0,1], and f : Q@ — R? be a dif-
feomorphism as shown in the graph. We are interested in
the set of points

||||§
[

L[]

L[]

A= {(z,y) €Q: fF(x,y) € Qforall k € Z}.

that stay in () for all forward and backward iterates under
f. As it is shown, the domain of f whose image is in ()
consists of two horizontal strips -

D=f1Q)NQ=H UH,. e

And the corresponding range consists of two vertical strips ||

R=f(Q)NQ=ViUVa. u

We have
V; = f(H;) and symmetrically H; = f'(V;), i = 1,2.

As a visual device, you may use V; = V}, for the left v-strip and V5, = Vj for
the right v-strip, and H, is the bottom h-strip and Hp is the top h-strip. As a
consequence

AC (HiUHy)N (VU V)

because the iterates of points from A must stay in the restricted domain and range

of fto Q.
Definion 1. If A # &, then each p € A,
(D) = (- Sm - S_1.5081Sn ")
is called the itinerary of p if
f¥(p) € Hy, forallk € Z.
Definion 2. (1) For eachp € D, define
&t (p) = 8081+ Sn -+ -
if f*(p) € Hy, forall k > 0, and call it the forward itinerary of p.
(2) Foreachp € R, define
¢ () = S_m - 5_150
if f*(p) € Vi, forall k <0, and call it the backward itinerary of p.
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(3) For each forward finite itinerary sq - - - s, define
Hypo, ={pcQ: f*p) € H,,, k=0,1,...,n}.
(4) For each backward finite itinerary s_,, - - - So, define

Ve osw=1p€Q: ff(p)eV,, k=0-1,...,—m}.
The following the result can be verified directly.
Proposition 1.  (a) For every finite forward itinerary, Hy,..;, is non-empty and

Hyys,, = Hggos, ., N f 7 (Hs,)
Hgys, = Hsy N f_l(Hsl”'Sn)
HSO"'S'rH»l - HSO"'Sn

(b) For every finite backward itinerary, Vs__ .5 s, is non-empty and

Vs—m---s_wo = V:@—m+1---s_180 N fm(v:@—m>

VS_"L---S,180 = ‘/TSO N f(‘/;—m'“sfl)
‘/S_(m.;.l)"’sflso C ‘/sf'm"'sflso

Proposition 2. Assume for each infinite forward itinerary sequence,

o0
Hyyosp = | Hegros,
k=0

is a unique horizontal curve (i.e., the graph of a function of 0 < x < 1). Assume
for each infinite backward itinerary sequence,

(o @]
Vs sy = [ Vesposs
k=1

is a unique vertical curve (i.e., the graph of a function of 0 < y < 1). Then the
intersection

Vis sy N Hggooso = {p}

is a unique point whose itinerary is exactly

(b(p):5:("'S,m'~~571_5031-..Sn...)_

Proof. By definition, f*(p) € H,, for k > 0 because p € H,..,,... foralln > 0.
Also, by the definition for backward itinerary, p € V,_,, f~'(p) € V._,, and
f*(p) € Vi_,,,, forall =k < 0. This is equivalent to f~(p) € f~'(Vi_,) =

H,_\, f2(p) € f'(Vi,) = H,_,, and in general f~*(p) = f~'(f~*D(p)) €
f(Ve ) = Hs_,,- Hence ¢(p) = s by definition. O
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The question now becomes under what conditions do the assumptions of the
proposition above hold and does the itinerary mapping ¢ defines a topological
conjugacy to the shift map on the symbolic space of doubly infinite sequences.

Here below the shift dynamics of symbolic system o : Y5 — 35 is defined as
follows:

Yo ={0,1} ={s=(...5.1.5051...) : 5x € {0,1}, k € Z}
and for every s € X,
o(s)=(...s,.5081...), ) = Sks1, k € Z.

Also, for every a > 1 and all s, 5" € ¥,

= (s, 5
da(s,s') = Z %7
defines a complete metric and they are topologically equivalent for all a > 0,
meaning a sequence s of ¥, is convergent with metric d, iff it is convergent
with metric d;, as long as a > 1,b > 1. Also, s’ is in a small neighborhood of s iff
s’ and s have the same symbols s, = s, for —M < k < N for some sufficiently
large M, N > 1. Here §(s,t) defines the discrete metric on the symbol space

{0,1}.
Theorem 1. Let Q = [0,1] x [0,1], and f : Q — R? be a diffeomorphism. Let

A= {(2,y) € Q: f¥x,y) € Qforallk € 7}.
Assume

(a) The pre-image f~1(Q) N Q consists of two connected components, called
H, and H,, whose images are denoted by Vi = f(H,),Vy = f(Hs). H; and
V; are assumed to be the horizontal strips and vertical strips, respectively,
in the sense that for each i = 1,2, and every i € [0, 1], the y-cross-section
Vi N {y = ¥} of V; is nonempty and its pre-image f~(V; N {y = y}) in H;
is a graph over the z-interval [0, 1].

(b) f is contractive in the x-direction and expansive in the y-direction in the
sense that

1 1
|D; frall < 5 and | D;g2,4]| < 3

where le,- = (f1is f2,)s fﬁl}vi = (91@92,0 and Vi = f(H;) fori,j = 1,2.

Then the dynamical system { f, A} is topologically conjugate to the shift dynamics
{0,Xs}. That is, there is a homeomorphism ¢ : A — 3 so that

pof=00¢



Proof. We claim first that under the assumption there exists a constant 0 < A < 1
and four differentiable functions h; ;, he;,7 = 1,2, mapping () into itself such that

|D;hy || + || Djhosl| < A < 1 (1)

for all 4, j = 1, 2; and, more importantly, for (Z,y) = (fi., f2:)(z,y) with
(x,y) € H; itis equivalent to the following cross representations

Yy = hZ,i (.flf, g)
r= hl,i (l‘, ﬂ)

Assume this claim and consider first an orbit v of f through (x,70) € A.
By definition, the itinerary s = (---s_1.5051 -+ - ) for (zo,yo) is uniquely deter-
mined by the rule (:pk,yk)cgfk(mo,yo) € H,, for all £ € Z. Using the cross
representations above with (z,y) = (g, yx) and (Z,9) = (Tra1,Yer1), 1.,
Yk = hos, (Tkys Ykt1)s The1 = has, (Tk, Ykt+1), and appending the resulting ex-
pressions for all k € Z yield

r_1 = hl,s_z(x—%y—l)
y-1 = hos (v_1,0)
o = his  (T-1,%)
Yo = has(T0,)

T = hig (%, yl)

1 = hog(71,12)

Treat the right hand side as an operator, say ®(-, s), mapping the doubly product
space Q% into itself and the asterisk above the equal sign the center of the doubly
infinite system. Then (zg,10) € A implies ¢ = (---(_1.(o¢1 -+ +) € QF with
¢t = (Yk, Tx11) must be a fixed point of ®(-,s), and conversely, if { is a fixed
point for (-, s), then there must be an orbit {(zx,yx) = f*(zo,y0)|k € Z} so
that (x = (yk, zr41) is true for all £ € Z because of the cross representations.

Moreover, if the correspondence between the parameter sequence s and the fixed

point ( is one-to-one, not only is the function @D(s)déf(mo, yo) well-defined, but

also the conjugacy relation f o1 = 1) o o must be satisfied. This is because
shifting the period in s forward one symbol corresponds to moving the asterisk
in the system above downward to the next y-equation, i.e. ¢(o(s)) = (z1,y1) =
f(xo,y0) = f(¢(s)). Indeed, the homeomorphic property for the map 1 is what
to be rigorously shown below by the uniform contraction mapping principle.

To do this, let A < 1 be as in (1) and let ;+ > 1 be such a constant that A\ < 1.
Then it is clear that the function

o0

1

k=—o0

def

d(¢.¢')=



defines a topologically equivalent metric on Q%, where the infinite sum is under-
stood as the limit of Zli , when & — oo and ¢ — oo independently. It follows
from the estimate below that ®(-, s) is contractive under this metric with a con-
traction constant Ay < 1 uniformly for s € X,.

it Lho,s (@, Yren) = oy (2 Y|+ sy (@0 Yn) — P (25 Y]
< [ (1D oL+ 1 Drhs 1) i — 2+

(1D2ha,se ] 4 1| Dahn ) lpiss = v
<w(h) B p(—p) el by (1)

i
le—al| | 1Yk+1—Yp il
< AM( LY + PiLE=Y )

where v(k)&\/p < Apif k > 0and Ay if k < 0.

It is also easy to see that as functions mapping from Q7 into itself (-, s) is
also continuous in the parameter s € 5. Thus, v is continuous. Moreover, since
the symbolic space Y, and the product space Q% are compact and Hausdorff, 1)
is also a homeomorphism. Let ¢ = 1~!. Then ¢ is the required topological
conjugacy between { f, A} and {0, ¥5}. It maps points of A to their itineraries in
Y.

Last, to complete the proof, we need to prove the claim. Recall that f ‘ H =
(f14, f2.) and f71 ’V;- = (g1, 92.). For simplicity of notation, we will drop the
subscript ¢ from these component functions f;;, g;; for the remainder of the proof.
To find hs, we derive first from the relations (z,y) = (f1, f2)(x,y), (z,y) =
(91, 92)(Z, y) the identity

y:g2<f1($7y),g> (2)
By the assumption we have ||D;g|| ||D;fi]| < 3+ < 1forj = 1, 2. Thus,
the implicit function theorem implies that y = hy(x,y) can be solved from the
equation above locally at the point (z,y) = f(z,y). It is also easy to see that this
function can be uniquely and differentiably extended to the entire region (). In
fact, for every = and ¥, because ffl(V N{y = y} is a graph over 0 < x < 1,
it intersects with the line + = z at a unique point (z,y), which in turn given
the image (z,y) = f(x,y). This is true because of condition(a). Let (z,y) =
=Yz, y) and then the global extension for h, follows immediately. Having obtain

this function, the other one is self-evident, namely, hldéf fi(-, ha(+,+)). To show
the estimate (1), differentiate (2) with ho(x,y) substituting for y. The implicit
function theorem then yields

1D £, 1| (141 D19, 1)
T=[[D1g, 1 D2,
D2, || (1+]1D2£,11)
=1 D1, D2/, 1|

||D1hy|| + || D1he|| <

|| Dahy|| + || Dahs|| <

Now a direct estimate with ||D; f1|| and ||D;gs|| < 3 from our hypothesis (b)
yields the desired inequality (1) . This completes the proof. [
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