
Horseshoe Map Theorem

Let Q = [0, 1] × [0, 1], and f : Q → R2 be a dif-
feomorphism as shown in the graph. We are interested in
the set of points

∆ := {(x, y) ∈ Q : fk(x, y) ∈ Q for all k ∈ Z}.

that stay inQ for all forward and backward iterates under
f . As it is shown, the domain of f whose image is in Q
consists of two horizontal strips

D = f−1(Q) ∩Q = H1 ∪H2.

And the corresponding range consists of two vertical strips

R = f(Q) ∩Q = V1 ∪ V2.

We have

Vi = f(Hi) and symmetrically Hi = f−1(Vi), i = 1, 2.

As a visual device, you may use V1 = VL for the left v-strip and V2 = VR for
the right v-strip, and HL is the bottom h-strip and HR is the top h-strip. As a
consequence

∆ ⊂ (H1 ∪H2) ∩ (V1 ∪ V2)
because the iterates of points from ∆ must stay in the restricted domain and range
of f to Q.

Definion 1. If ∆ 6= ∅, then each p ∈ ∆,

φ(p) = (· · · s−m · · · s−1.s0s1 · · · sn · · · )

is called the itinerary of p if

fk(p) ∈ Hsk for all k ∈ Z.

Definion 2. (1) For each p ∈ D, define

φ+(p) = s0s1 · · · sn · · ·

if fk(p) ∈ Hsk for all k ≥ 0, and call it the forward itinerary of p.

(2) For each p ∈ R, define

φ−(p) = · · · s−m · · · s−1s0

if fk(p) ∈ Vsk for all k ≤ 0, and call it the backward itinerary of p.
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(3) For each forward finite itinerary s0 · · · sn, define

Hs0···sn = {p ∈ Q : fk(p) ∈ Hsk , k = 0, 1, . . . , n}.

(4) For each backward finite itinerary s−m · · · s0, define

Vs−m···s0 = {p ∈ Q : fk(p) ∈ Vsk , k = 0,−1, . . . ,−m}.

The following the result can be verified directly.

Proposition 1. (a) For every finite forward itinerary, Hs0···sn is non-empty and

Hs0···sn = Hs0···sn−1 ∩ f−n(Hsn)
Hs0···sn = Hs0 ∩ f−1(Hs1···sn)
Hs0···sn+1 ⊂ Hs0···sn

(b) For every finite backward itinerary, Vs−m···s−1s0 is non-empty and

Vs−m···s−1s0 = Vs−m+1···s−1s0 ∩ fm(Vs−m)
Vs−m···s−1s0 = Vs0 ∩ f(Vs−m···s−1)
Vs−(m+1)···s−1s0 ⊂ Vs−m···s−1s0

Proposition 2. Assume for each infinite forward itinerary sequence,

Hs0···sn··· =
∞⋂
k=0

Hs0···sk

is a unique horizontal curve (i.e., the graph of a function of 0 ≤ x ≤ 1). Assume
for each infinite backward itinerary sequence,

V···s−m···s−1 =
∞⋂
k=1

V···s−k···s−1

is a unique vertical curve (i.e., the graph of a function of 0 ≤ y ≤ 1). Then the
intersection

V···s−m···s−1 ∩Hs0···sn··· = {p}

is a unique point whose itinerary is exactly

φ(p) = s = (· · · s−m · · · s−1.s0s1 · · · sn · · · ).

Proof. By definition, fk(p) ∈ Hsk for k ≥ 0 because p ∈ Hs0···sn··· for all n ≥ 0.
Also, by the definition for backward itinerary, p ∈ Vs−1 , f

−1(p) ∈ Vs−2 , and
f−k(p) ∈ Vs−(k+1)

for all −k ≤ 0. This is equivalent to f−1(p) ∈ f−1(Vs−1) =

Hs−1 , f
−2(p) ∈ f−1(Vs−2) = Hs−2 , and in general f−k(p) = f−1(f−(k−1)(p)) ∈

f−1(Vs−(k)
) = Hs−(k)

. Hence φ(p) = s by definition.
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The question now becomes under what conditions do the assumptions of the
proposition above hold and does the itinerary mapping φ defines a topological
conjugacy to the shift map on the symbolic space of doubly infinite sequences.

Here below the shift dynamics of symbolic system σ : Σ2 → Σ2 is defined as
follows:

Σ2 = {0, 1}Z = {s = (. . . s−1.s0s1 . . . ) : sk ∈ {0, 1}, k ∈ Z}

and for every s ∈ Σ2,

σ(s) = (. . . s′−1.s
′
0s
′
1 . . . ), s

′
k = sk+1, k ∈ Z.

Also, for every a > 1 and all s, s′ ∈ Σ2,

da(s, s
′) =

∞∑
i=−∞

δ(si, s
′
i)

a|i|+1
,

defines a complete metric and they are topologically equivalent for all a > 0,
meaning a sequence s(n) of Σ2 is convergent with metric da iff it is convergent
with metric db as long as a > 1, b > 1. Also, s′ is in a small neighborhood of s iff
s′ and s have the same symbols s′k = sk for −M ≤ k ≤ N for some sufficiently
large M,N > 1. Here δ(s, t) defines the discrete metric on the symbol space
{0, 1}.

Theorem 1. Let Q = [0, 1]× [0, 1], and f : Q→ R2 be a diffeomorphism. Let

∆ := {(x, y) ∈ Q : fk(x, y) ∈ Q for all k ∈ Z}.

Assume

(a) The pre-image f−1(Q) ∩ Q consists of two connected components, called
H1 andH2, whose images are denoted by V1 = f(H1), V2 = f(H2). Hi and
Vj are assumed to be the horizontal strips and vertical strips, respectively,
in the sense that for each i = 1, 2, and every ȳ ∈ [0, 1], the y-cross-section
Vi ∩ {y = ȳ} of Vi is nonempty and its pre-image f−1(Vi ∩ {y = ȳ}) in Hi

is a graph over the x-interval [0, 1].

(b) f is contractive in the x-direction and expansive in the y-direction in the
sense that

||Djf1,i|| <
1

2
and ||Djg2,i|| <

1

2
,

where f
∣∣
Hi

= (f1,i, f2,i), f−1
∣∣
Vi

= (g1,i, g2,i) and Vi = f(Hi) for i, j = 1, 2.

Then the dynamical system {f,∆} is topologically conjugate to the shift dynamics
{σ,Σ2}. That is, there is a homeomorphism φ : ∆→ Σ2 so that

φ ◦ f = σ ◦ φ
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Proof. We claim first that under the assumption there exists a constant 0 < λ < 1
and four differentiable functions h1,i, h2,i, i = 1, 2, mappingQ into itself such that

||Djh1,i||+ ||Djh2,i|| ≤ λ < 1 (1)

for all i, j = 1, 2; and, more importantly, for (x̄, ȳ) = (f1,i, f2,i)(x, y) with
(x, y) ∈ Hi it is equivalent to the following cross representations

y = h2,i(x, ȳ)
x̄ = h1,i(x, ȳ)

Assume this claim and consider first an orbit γ of f through (x0, y0) ∈ ∆.
By definition, the itinerary s = (· · · s−1.s0s1 · · · ) for (x0, y0) is uniquely deter-
mined by the rule (xk, yk)

def
=fk(x0, y0) ∈ Hsk for all k ∈ Z. Using the cross

representations above with (x, y) = (xk, yk) and (x̄, ȳ) = (xk+1, yk+1), i.e.,
yk = h2,sk(xk, yk+1), xk+1 = h1,sk(xk, yk+1), and appending the resulting ex-
pressions for all k ∈ Z yield

...
x−1 = h1,s−2(x−2, y−1)
y−1 = h2,s−1(x−1, y0)
x0 = h1,s−1(x−1, y0)

y0
∗
= h2,s0(x0, y1)

x1 = h1,s0(x0, y1)
y1 = h2,s1(x1, y2)

...

Treat the right hand side as an operator, say Φ(·, s), mapping the doubly product
space QZ into itself and the asterisk above the equal sign the center of the doubly
infinite system. Then (x0, y0) ∈ ∆ implies ζ = (· · · ζ−1.ζ0ζ1 · · · ) ∈ QZ with
ζk = (yk, xk+1) must be a fixed point of Φ(·, s), and conversely, if ζ is a fixed
point for Φ(·, s), then there must be an orbit {(xk, yk) = fk(x0, y0)

∣∣k ∈ Z} so
that ζk = (yk, xk+1) is true for all k ∈ Z because of the cross representations.
Moreover, if the correspondence between the parameter sequence s and the fixed
point ζ is one-to-one, not only is the function ψ(s)

def
=(x0, y0) well-defined, but

also the conjugacy relation f ◦ ψ = ψ ◦ σ must be satisfied. This is because
shifting the period in s forward one symbol corresponds to moving the asterisk
in the system above downward to the next y-equation, i.e. ψ

(
σ(s)

)
= (x1, y1) =

f(x0, y0) = f
(
ψ(s)

)
. Indeed, the homeomorphic property for the map ψ is what

to be rigorously shown below by the uniform contraction mapping principle.
To do this, let λ < 1 be as in (1) and let µ > 1 be such a constant that λµ < 1.

Then it is clear that the function

d(ζ, ζ ′)
def
=

∞∑
k=−∞

1

µ|k|
(|yk − y′k|+ |xk+1 − x′k+1|)

4



defines a topologically equivalent metric on QZ, where the infinite sum is under-
stood as the limit of

∑k
−` when k → ∞ and ` → ∞ independently. It follows

from the estimate below that Φ(·, s) is contractive under this metric with a con-
traction constant λµ < 1 uniformly for s ∈ Σ2.

1
µ|k|

[
|h2,sk(xk, yk+1)− h2,sk(x′k, y

′
k+1)|+ |h1,sk(xk, yk+1)− h1,sk(x′k, y

′
k+1)|

]
≤ 1

µ|k|

[(
||D1h2,sk ||+ ||D1h1,sk ||

)
|xk − x′k|+(

||D2h2,sk ||+ ||D2h2,sk ||
)
|yk+1 − y′k+1|

]
≤ ν(k)

|xk−x′k|
µ|k−1| + ν(−k)

|yk+1−y′k+1|
µ|k+1| ( by (1) )

≤ λµ
(
|xk−x′k|
µ|k−1| +

|yk+1−y′k+1|
µ|k+1|

)
,

where ν(k)
def
=λ/µ < λµ if k > 0 and λµ if k ≤ 0.

It is also easy to see that as functions mapping from QZ into itself Φ(·, s) is
also continuous in the parameter s ∈ Σ2. Thus, ψ is continuous. Moreover, since
the symbolic space Σ2 and the product space QZ are compact and Hausdorff, ψ
is also a homeomorphism. Let φ = ψ−1. Then φ is the required topological
conjugacy between {f,∆} and {σ,Σ2}. It maps points of ∆ to their itineraries in
Σ2.

Last, to complete the proof, we need to prove the claim. Recall that f
∣∣
Hi

=

(f1,i, f2,i) and f−1
∣∣
Vi

= (g1,i, g2,i). For simplicity of notation, we will drop the
subscript i from these component functions fj,i, gj,i for the remainder of the proof.
To find h2, we derive first from the relations (x̄, ȳ) = (f1, f2)(x, y), (x, y) =
(g1, g2)(x̄, ȳ) the identity

y = g2(f1(x, y), ȳ). (2)

By the assumption we have ||Djg2|| ||Djf1|| < 1
4
< 1 for j = 1, 2. Thus,

the implicit function theorem implies that y = h2(x, ȳ) can be solved from the
equation above locally at the point (x̄, ȳ) = f(x, y). It is also easy to see that this
function can be uniquely and differentiably extended to the entire region Q. In
fact, for every x and ȳ, because f−1(V ∩ {y = ȳ} is a graph over 0 ≤ x ≤ 1,
it intersects with the line x = x at a unique point (x, y), which in turn given
the image (x̄, ȳ) = f(x, y). This is true because of condition(a). Let (x, y) =
f−1(x̄, ȳ) and then the global extension for h2 follows immediately. Having obtain
this function, the other one is self-evident, namely, h1

def
=f1(·, h2(·, ·)). To show

the estimate (1), differentiate (2) with h2(x, ȳ) substituting for y. The implicit
function theorem then yields

||D1h1||+ ||D1h2|| ≤
||D1f1 ||

(
1+||D1g2 ||

)
1−||D1g2 || ||D2f1 ||

||D2h1||+ ||D2h2|| ≤
||D2g2 ||

(
1+||D2f1 ||

)
1−||D1g2 || ||D2f1 ||

.

Now a direct estimate with ||Djf1|| and ||Djg2|| < 1
2

from our hypothesis (b)
yields the desired inequality (1) . This completes the proof.
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