
[Lecture Note 3]

Hartman-Grobman Theorem
Let A be a n × n nonsingular matrix which does not have eigenvalues on the

unit circle. Let Es be the generalized eigenspace of A for eigenvalues whose
moduli are less than 1 and Eu be the generalized eigenspace of A for eigenvalues
whose moduli are greater than 1. Then Rn = Es ⊕ Eu and x = xs + xu with
xs ∈ Es, xu ∈ Eu. Denote by As = A|Es , Au = A|Eu . Then by choosing an
appropriate coordinate system in Es, Eu by Jordan’s canonical form for A, we
can assume

|As| < 1, |A−1
u | < 1 < |Au|.

In fact, one can treat xs ∈ Ra, xu ∈ Rb where a = dim(Es), b = dim(Eu), a +
b = n, A = diag(As, Au) with As an a×a matrix with eigenvalues inside the unit
circle, and Au a b×b matrix with eigenvalues outside the unit circle. Also, we can
use the Euclidean norm for the coordinate system x and the corresponding matrix
norm for A satisfying the bounds above. Such a norm is referred to as an adapted
norm for the matrix A.

Definition 1. A fixed point x0 of a continuously differentiable map f : Rn → Rn

is called a hyperbolic fixed point if the linearization Df(x0) is nonsingular and
has no eigenvalues on the unit circle.

Definition 2. Two dynamical systems f : U → U and g : V → V with U, V open
sets in Rn are said to be topologically conjugate if there is a homeomorphism
φ : U → V so that

φ ◦ f = g ◦ φ

That is, the following diagram commutes

U
f−−−→ U

φ

y yφ
V −−−→

g
V

Theorem 1 (The Hartman-Grobman Theorem). Let x0 be a hyperbolic fixed point
of a continuously differentiable map f in Rn. Then there is a small open neigh-
borhood U of x0 so that f on U is topologically conjugate to its linearization
Df(x0).

Proof. Let | · | be an adapted norm for A = Df(x0) with α = max(|As|, |A−1
u |) <

1. By making this transformation, x→ x− x0, we can assume wlog that x0 = 0.
Also, by extending the map globally, f → Df(0)x+ρr(x)(f(x)−Df(0)x), using
a cut-off function ρr, we only need to prove the global C0-conjugacy result for
functions of the form f(x) = Ax+ h(x) where A = Df(0), h(0) = 0, Dh(0) =
0. Because of the continuity, we can choose a small r > 0 so that supRn(|h(x)|+
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|Dh(x)|) < δ for a small δ > 0 for which the Global Inverse Function Theorem
applies for f for which f−1 is also in C1(Rn).

The proof is to find a homeomorphism φ : Rn → Rn of the following form

φ = id + v

where v ∈ X := C0(Rn) so that φ ◦ (A + h) = A ◦ φ. Denote by | · |0 the norm
for X . It is straightforward to verify that the conjugacy equation is equivalent to
either of the following fixed-point problems

v = −h ◦ (A+ h)−1 + A ◦ v ◦ (A+ h)−1

v = A−1 ◦ h+ A−1 ◦ v ◦ (A+ h).

We use the first equation to define vs and the second equation to define vu. Specif-
ically, for any v ∈ X, h ∈ Y := Nδ(0) ⊂ C1(Rn), define F (v, h) = F (v, h)s +
F (v, h)u by the relations

F (v, h)s = −hs ◦ (A+ h)−1 + As ◦ vs ◦ (A+ h)−1

F (v, h)u = A−1
u ◦ hu + A−1

u ◦ vu ◦ (A+ h).

It is straightforward to verify that for v, w ∈ X and h ∈ Y ,

F (v, h) ∈ X with |F (v, h)|0 ≤ |h|0 + α|v|0,
|F (v, h)− F (w, h)|0 ≤ α|v − w|0,
F (0, 0) = 0, and F (v, h) is continuous in h ∈ Y .

That is, F : X × Y → X is continuous and F (·, h) is a uniform contraction from
X to itself. Thus, by the Uniform Contraction Principle I, there is a continuous
function v : Y → X so that F (w, h) = w with (w, h) ∈ X × Y iff w = v(h).
Hence, φ(h) = id + v(h) ∈ X and φ ◦ (A+ h) = A ◦ φ holds.

It remains to show that φ(h) is a homeomorphism. To this end, we consider
the equation (A+ h) ◦ψ = ψ ◦A with ψ = id+w, w ∈ X and h ∈ Y . The same
arguments above can be used to show that there is a unique such ψ(h) for each
h ∈ Y , making δ smaller if necessary for Y = Nδ(0). Because of the conjugacy
equations for both φ and ψ, we have

φ(h) ◦ ψ(h) = (A−1 ◦ φ(h) ◦ (A+ h)) ◦ ψ(h)
= A−1 ◦ φ(h) ◦ ((A+ h) ◦ ψ(h)) = A−1 ◦ φ(h) ◦ ψ(h) ◦ A.

It can also be verified easily that

φ(h) ◦ ψ(h) = id + w(h) + v(h) ◦ [id + w(h)] := id + k

with k ∈ X . Hence,

k = A−1 ◦ k ◦ A⇔ k = A ◦ k ◦ A−1

implying F (k, 0) = k. By the uniqueness of the fixed point and the identity
F (0, 0) = 0, we conclude k = 0 and φ(h) ◦ ψ(h) = id follows. Similarly, we can
show ψ(h) ◦ φ(h) = id, showing φ(h) is indeed a homeomorphism on Rn.

Reference: S.-N. Chow and J.K. Hale, Methods of Bifurcation Theory, Springer-
Verlag, 1982.
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