Hartman-Grobman Theorem

Let A be a $n \times n$ nonsingular matrix which does not have eigenvalues on the unit circle. Let E^s be the generalized eigenspace of A for eigenvalues whose moduli are less than 1 and E^u be the generalized eigenspace of A for eigenvalues whose moduli are greater than 1. Then $\mathbb{R}^n = E^s \oplus E^u$ and $x = x_s + x_u$ with $x_s \in E^s$, $x_u \in E^u$. Denote by $A_s = A|_{E^s}$, $A_u = A|_{E^u}$. Then by choosing an appropriate coordinate system in E^s , E^u by Jordan's canonical form for A, we can assume

$$|A_s| < 1, |A_u^{-1}| < 1 < |A_u|.$$

In fact, one can treat $x_s \in \mathbb{R}^a$, $x_u \in \mathbb{R}^b$ where $a = \dim(E^s)$, $b = \dim(E^u)$, a + b = n, $A = \operatorname{diag}(A_s, A_u)$ with A_s an $a \times a$ matrix with eigenvalues inside the unit circle, and A_u a $b \times b$ matrix with eigenvalues outside the unit circle. Also, we can use the Euclidean norm for the coordinate system x and the corresponding matrix norm for A satisfying the bounds above. Such a norm is referred to as an adapted norm for the matrix A.

Definition 1. A fixed point x_0 of a continuously differentiable map $f : \mathbb{R}^n \to \mathbb{R}^n$ is called a hyperbolic fixed point if the linearization $Df(x_0)$ is nonsingular and has no eigenvalues on the unit circle.

Definition 2. Two dynamical systems $f: U \to U$ and $g: V \to V$ with U, V open sets in \mathbb{R}^n are said to be topologically conjugate if there is a homeomorphism $\phi: U \to V$ so that

$$\phi \circ f = g \circ \phi$$

That is, the following diagram commutes

$$\begin{array}{ccc} U & \stackrel{f}{\longrightarrow} & U \\ \downarrow \phi & & \downarrow \phi \\ V & \stackrel{q}{\longrightarrow} & V \end{array}$$

Theorem 1 (The Hartman-Grobman Theorem). Let x_0 be a hyperbolic fixed point of a continuously differentiable map f in \mathbb{R}^n . Then there is a small open neighborhood U of x_0 so that f on U is topologically conjugate to its linearization $Df(x_0)$.

Proof. Let $|\cdot|$ be an adapted norm for $A = Df(x_0)$ with $\alpha = \max(|A_s|, |A_u^{-1}|) < 1$. By making this transformation, $x \to x - x_0$, we can assume wlog that $x_0 = 0$. Also, by extending the map globally, $f \to Df(0)x + \rho_r(x)(f(x) - Df(0)x)$, using a cut-off function ρ_r , we only need to prove the global C^0 -conjugacy result for functions of the form f(x) = Ax + h(x) where A = Df(0), h(0) = 0, Dh(0) = 0. Because of the continuity, we can choose a small r > 0 so that $\sup_{\mathbb{R}^n}(|h(x)| + 1)$

|Dh(x)|) $<\delta$ for a small $\delta>0$ for which the Global Inverse Function Theorem applies for f for which f^{-1} is also in $C^1(\mathbb{R}^n)$.

The proof is to find a homeomorphism $\phi: \mathbb{R}^n \to \mathbb{R}^n$ of the following form

$$\phi = \mathrm{id} + v$$

where $v \in X := C^0(\mathbb{R}^n)$ so that $\phi \circ (A+h) = A \circ \phi$. Denote by $|\cdot|_0$ the norm for X. It is straightforward to verify that the conjugacy equation is equivalent to either of the following fixed-point problems

$$v = -h \circ (A+h)^{-1} + A \circ v \circ (A+h)^{-1}$$

$$v = A^{-1} \circ h + A^{-1} \circ v \circ (A+h).$$

We use the first equation to define v_s and the second equation to define v_u . Specifically, for any $v \in X$, $h \in Y := N_{\delta}(0) \subset C^1(\mathbb{R}^n)$, define $F(v,h) = F(v,h)_s + F(v,h)_u$ by the relations

$$F(v,h)_s = -h_s \circ (A+h)^{-1} + A_s \circ v_s \circ (A+h)^{-1}$$

$$F(v,h)_u = A_u^{-1} \circ h_u + A_u^{-1} \circ v_u \circ (A+h).$$

It is straightforward to verify that for $v, w \in X$ and $h \in Y$,

$$F(v,h) \in X$$
 with $|F(v,h)|_0 \le |h|_0 + \alpha |v|_0$, $|F(v,h) - F(w,h)|_0 \le \alpha |v-w|_0$, $F(0,0) = 0$, and $F(v,h)$ is continuous in $h \in Y$.

That is, $F: X \times Y \to X$ is continuous and $F(\cdot,h)$ is a uniform contraction from X to itself. Thus, by the Uniform Contraction Principle I, there is a continuous function $v: Y \to X$ so that F(w,h) = w with $(w,h) \in X \times Y$ iff w = v(h). Hence, $\phi(h) = \operatorname{id} + v(h) \in X$ and $\phi \circ (A+h) = A \circ \phi$ holds.

It remains to show that $\phi(h)$ is a homeomorphism. To this end, we consider the equation $(A+h)\circ\psi=\psi\circ A$ with $\psi=\operatorname{id}+w$, $w\in X$ and $h\in Y$. The same arguments above can be used to show that there is a unique such $\psi(h)$ for each $h\in Y$, making δ smaller if necessary for $Y=N_{\delta}(0)$. Because of the conjugacy equations for both ϕ and ψ , we have

$$\phi(h) \circ \psi(h) = (A^{-1} \circ \phi(h) \circ (A+h)) \circ \psi(h)$$

= $A^{-1} \circ \phi(h) \circ ((A+h) \circ \psi(h)) = A^{-1} \circ \phi(h) \circ \psi(h) \circ A$.

It can also be verified easily that

$$\phi(h) \circ \psi(h) = \mathrm{id} + w(h) + v(h) \circ [\mathrm{id} + w(h)] := \mathrm{id} + k$$

with $k \in X$. Hence,

$$k = A^{-1} \circ k \circ A \Leftrightarrow k = A \circ k \circ A^{-1}$$

implying F(k,0)=k. By the uniqueness of the fixed point and the identity F(0,0)=0, we conclude k=0 and $\phi(h)\circ\psi(h)=\mathrm{id}$ follows. Similarly, we can show $\psi(h)\circ\phi(h)=\mathrm{id}$, showing $\phi(h)$ is indeed a homeomorphism on \mathbb{R}^n .

Reference: S.-N. Chow and J.K. Hale, Methods of Bifurcation Theory, Springer-Verlag, 1982.