[Lecture Note 3]
Hartman-Grobman Theorem

Let A be a n x n nonsingular matrix which does not have eigenvalues on the
unit circle. Let E° be the generalized eigenspace of A for eigenvalues whose
moduli are less than 1 and E" be the generalized eigenspace of A for eigenvalues
whose moduli are greater than 1. Then R" = E°* ¢ E* and x = z4 4+ x, with
xs € E°, x, € E*. Denote by A; = Algs, A, = A|gu. Then by choosing an
appropriate coordinate system in £°, E" by Jordan’s canonical form for A, we
can assume

A <1 4,7 <1< |4,

In fact, one can treat z; € R?, z,, € R® where a = dim(E?®), b = dim(EY), a +
b=mn, A = diag(As, A,) with A an a X a matrix with eigenvalues inside the unit
circle, and A, a b x b matrix with eigenvalues outside the unit circle. Also, we can
use the Euclidean norm for the coordinate system z and the corresponding matrix
norm for A satisfying the bounds above. Such a norm is referred to as an adapted
norm for the matrix A.

Definition 1. A fixed point x( of a continuously differentiable map f : R* — R"
is called a hyperbolic fixed point if the linearization D f(xq) is nonsingular and
has no eigenvalues on the unit circle.

Definition 2. Two dynamical systems f : U — U and g : V — V with U, V open
sets in R"™ are said to be topologically conjugate if there is a homeomorphism
¢ : U — V so that

pof=go¢

That is, the following diagram commutes

Theorem 1 (The Hartman-Grobman Theorem). Let xy be a hyperbolic fixed point
of a continuously differentiable map f in R™. Then there is a small open neigh-
borhood U of xq so that f on U is topologically conjugate to its linearization

Proof. Let |- | be an adapted norm for A = D f (o) with o = max(|A,],|A;|) <
1. By making this transformation, z — x — xy, we can assume wlog that zy = 0.
Also, by extending the map globally, f — D f(0)z+p,.(z)(f(x)—Df(0)x), using
a cut-off function p,, we only need to prove the global C°-conjugacy result for
functions of the form f(z) = Ax + h(z) where A = D f(0), h(0) = 0, Dh(0) =
0. Because of the continuity, we can choose a small 7 > 0 so that supgn (|2(x)| +




|Dh(x)|) < 6 for a small 6 > 0 for which the Global Inverse Function Theorem
applies for f for which f~! is also in C''(R").
The proof is to find a homeomorphism ¢ : R" — R" of the following form

¢=id + v

where v € X := C°(R") so that ¢ o (A + h) = A o ¢. Denote by | - |, the norm
for X. It is straightforward to verify that the conjugacy equation is equivalent to
either of the following fixed-point problems

v=—ho(A+h)'+Aovo(A+h)!
v=A"loh+ A ovo(A+h).

We use the first equation to define v, and the second equation to define v,,. Specif-
ically, forany v € X, h € Y := Ns(0) C C*(R"), define F(v,h) = F(v,h), +
F(v, h), by the relations
F(v,h)s = —hso(A+h)™' + A;ovs0 (A+h)™!
F(v,h), = A  ohy,+ A ov, 0 (A4 ).
It is straightforward to verify that for v,w € X and h € Y,
F(v,h) € X with |F(v,h)|o < |h|o + a|v]o,
|F'(v,h) — F(w, h)|p < alv — w)o,
F(0,0) =0, and F(v, h) is continuous in h € Y.

Thatis, F': X X Y — X is continuous and F'(+, h) is a uniform contraction from
X to itself. Thus, by the Uniform Contraction Principle I, there is a continuous
function v : Y — X so that F(w,h) = w with (w,h) € X x Y iff w = v(h).
Hence, ¢(h) =id +v(h) € X and ¢ o (A + h) = A o ¢ holds.

It remains to show that ¢(h) is a homeomorphism. To this end, we consider
the equation (A4 h) o) = o Awithy) =id+w,w € X and h € Y. The same
arguments above can be used to show that there is a unique such ¢ (h) for each
h € Y, making § smaller if necessary for Y = N;(0). Because of the conjugacy
equations for both ¢ and 1), we have

¢(h) o o(h) = (A" o ¢(h) o (A + h)) o th(h)
= A7 o ¢(h) o ((A+h)otp(h)) = A7 o ¢(h) o p(h) o A.

It can also be verified easily that
d(h) op(h) =id + w(h) + v(h) o [id + w(h)] :==1id + k
with £ € X. Hence,
k=A'lokoAsk=AokoA™!

implying F'(k,0) = k. By the uniqueness of the fixed point and the identity
F(0,0) = 0, we conclude k£ = 0 and ¢(h) o 1»(h) = id follows. Similarly, we can
show ¢ (h) o ¢(h) = id, showing ¢(h) is indeed a homeomorphism on R".  [J
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