
MATH 428/828 Notes on Shadow Price and Duality (M428 students not responsible to text in blue)

Consider the primal LP problem of maximizing z = c1x1 + · · · + cnxn subject to ai1x1 + · · · + ainxn ≤ bi for i =
1, 2, . . . ,m and xj ≥ 0 for j = 1, 2, . . . , n. Recall that the simplex method is to maximize the component z of the solution,
(z, x1, . . . , xn+m), to the augmented linear system of equations: z−c1x1−· · ·−cnxn = 0, ai1x1+· · ·+ainxn+xn+i = bi
for 1 ≤ i ≤ m,xj ≥ 0, 1 ≤ j ≤ n + m with xn+i ≥ 0 being the slack variables. Recall that the simplex method is to
use elementary row reductions to find a feasible echelon form of the equality system at each step so that a basic feasible
solution is obtained by setting all the nonbasic variables zeros and that the corresponding basic feasible solution is to have
an improved z-value. Denote the last solution form (the same at any intermediate step) as

z + c̄1x1 + · · ·+ c̄n+mxn+m = b∗0 =
∑m

i=1 y
∗
i bi

ā11x1 + · · ·+ ā1 (n+m)xn+m = b∗1
...

ām1x1 + · · ·+ ām (n+m)xn+m = b∗m
xi = 0 for n many non-basic variables and
xj ≥ 0 for m many basic variables.

This form is feasible echelon in the sense that variable xj is a basic variable for some 1 ≤ j ≤ n + m if and only if
there is an ij so that the coefficient of xj from the ij th constraint equation is āijj = 1, and all other coefficients of xj are
zeros: āij = 0, i ̸= ij and c̄j = 0. It is the final solution form if c̄i ≥ 0 for all i by the optimality test and b∗i ≥ 0 for
all 1 ≤ i ≤ m. The corresponding basic feasible solution is exactly xj = b∗ij for all basic variables and xi = 0 for all
non-basic variables xi, with the corresponding z-value at the basic feasible point as z = b∗0. It is also important to note that
b∗0 is a linear combination of the original constraints right hand bi because of the following reason. In fact, the coefficient
y∗i of the resource parameter bi is the result of the elementary row reduction for the simplex method when a y∗i multiple
of the ith constraint row is added to the 0th row. More importantly, because the (n + i)th slack variable xn+i has the
same constant coefficient, 1, as parameter bi does to start the simplex method, they both have the same coefficient for the
z-equation after every row operation, and especially, at the final solution step, both coefficient must be equal: c̄n+i = y∗i .
By definition, the shadow price of the ith resource constraint is the rate of change of the optimal solution with respect to
the ith resource parameter bi, that is, ∂b∗0

∂bi
, which by the z-equation of the last solution form we find ∂b∗0

∂bi
= y∗i = c̄n+i, the

coefficient of the ith slack variable xn+i.
In matrix notation, the primal LP problem is max z = cTx sub.t. Ax ≤ b, componentwise, with A = Am×n,

c = [c1, . . . , cn]
T , x = [x1, . . . , xn]

T , b = [b1, . . . , bm]T being vectors. Let xs = [xn+1, . . . , xn+m]T denote the slack

variable, X =

[
x
xs

]
, and 0 = [0, 0, . . . , 0]T the zero-vector. Then the augmented LP form is: z − cTx + 0Txs =

0, Ax+ xs = b,X ≥ 0 and the problem is to find a feasible solution so that the z value of the solution is the largest. Here
for two vectors u, v, u ≤ v means the inequality holds componentwise. Since y∗i are the scalar multiples used by the row
operations to get the z-equation, at the last step of the simplex method we must have z − cTx+ y∗TAx+ y∗Txs = y∗T b,
and equivalently z = (cT −y∗TA)x−y∗Txs+y∗T b := −c̄X+y∗T b. Notice that this form z = (cT −yTA)x−yTxs+yT b
holds at any step of row operations when using the components of y as the constant multiples of the corresponding constraint
rows and then adding those multiples to the objective row z−cTx+0Txs = 0. When evaluate at the corresponding optimal
basic feasible solution X , the z-value of the optimal solution is z = y∗T b for which we must have cT − y∗TA ≤ 0T and
y∗ ≥ 0, equivalently, y∗TA ≥ cT or AT y∗ ≥ c, y∗ ≥ 0. That is, y∗ is a feasible point for this LP problem: minw = bT y
sub.t. AT y ≥ c, y ≥ 0, which is called the dual LP problem of the primal LP problem. In fact, we have the following
duality result.

Theorem 1. The shadow prince y∗ for the primal LP problem max z = cTx sub.t. Ax ≤ b, x ≥ 0 is a solution to the dual
LP problem minw = bT y sub.t. AT y ≥ c, y ≥ 0.

Proof. The discussion preceded the theorem shows y∗ is a feasible point for the dual problem. The only part remains to
prove is that the shadow price solves the dual problem. Suppose not, then there is a feasible point ȳ for the dual problem
so that AT ȳ ≥ c ⇔ ȳTA ≥ cT and ȳ ≥ 0 but with the dual optimal value w = bT ȳ that is strictly smaller than the
feasible value bT y∗, i.e. bT ȳ < bT y∗. We only need to show this inequality is false. To do so, we go back to the primal
LP problem. First, instead of using the same operations on the z-equation by the shadow price vector y∗, we use instead
the components of ȳ for the constant multiples of the corresponding constraint row equations and then add these multiples
to the objective row to get the equivalent z-equation: z = (cT − ȳTA)x − ȳTxs + ȳT b. Next, we use the same row
operations on the constraint equations of the primal problem to get the same basic feasible point X since the z-equation
is never used in row operations for the constraint equations. Since the row operations do not change the solutions to the
equality LP problem, in particular, not the value of the z variable, the evaluation of the new z equation at the same optimal
basic feasible point X must produce the same optimal value z = (cT − ȳTA)x − ȳTxs + ȳT b = y∗T b with x and xs

consisting of the basic feasible solution X . We now show this is impossible under the assumption that ȳT b < y∗T b.
Because (cT − ȳTA) ≤ 0T and −ȳT ≤ 0 by the feasibility condition for the dual problem and x ≥ 0, xs ≥ 0, we surely
will have (cT − ȳTA)x− ȳTxs ≤ 0 and hence y∗T b ≤ ȳT b. This contradicts the assumption that ȳT b < y∗T b.

Notice that, the primal and the dual problem have the same optimal value y∗T b. As an exercise, prove the dual of the dual
problem is the primal problem. That is, the primal and dual problems are the dual problem of each other. Also, prove that
the solution x∗ to the primal problem is the shadow price for the dual problem, that is cTx∗ = bT y∗.


