
MATH 428/828 Notes on Nash Equilibrium Point (M428 students not responsible to text in blue)

For this notes, x = [x1, . . . , xm]T , y = [y1, . . . , yn]
T are mixed strategy probability (column) vectors with xi ≥ 0

for all i, yj ≥ 0 for all j, and
∑

i xi = 1,
∑

j yj = 1, with vT for the transpose of vector v. Also, 1 = [1, . . . , 1]T ,
the vector of all entries equal to 1 for an appropriate dimension depending on context. Thus,

∑
i xi = xT1 = 1Tx. Let

A = Am×n = [aij ] be the payoff matrix for Player X against Player Y in a zero-sum game, Aj be the column vectors of
the matrix A and ai be the row vectors of A, i.e. A = [A1, A2, . . . , An] and AT = [aT1 , . . . , a

T
m]. Then, the expected payoff

per play for Player X is E(x, y) =
∑

i,j aijxiyj which can be summed in two different orders, each in a dot product form:
E(x, y) =

∑
i xi(

∑
j aijyj) = xT (Ay) and E(x, y) =

∑
j(
∑

i aijxi)yj = (xTA)y, and both are E(x, y) = xTAy.
Finally, for two vectors a, b, a ≤ b means the inequality holds componentwise.

The goal of the mixed game for the players is to find (x̄, ȳ) such that

E(x̄, ȳ) = max
x

E(x, ȳ) and E(x̄, ȳ) = min
y

E(x̄, y)

A solution (x̄, ȳ) to this problem is called an optimal game solution or an optimal solution or a game solution for short, and
E(x̄, ȳ) is called the game value.

Definition 1. (x̄, ȳ) is an Nash equilibrium point if for all probability mixed strategy vectors x, y,

E(x, ȳ) ≤ E(x̄, ȳ) ≤ E(x̄, y).

Proposition 1. Any optimal game solution is an Nash equilibrium point and vise versa.

Proof. E(x̄, ȳ) = maxx E(x, ȳ) ≥ E(x, ȳ) for any x and E(x̄, ȳ) = miny E(x̄, y) ≤ E(x̄, y) for any y, showing (x̄, ȳ)
is an NE by definition. Conversely, let (x̄, ȳ) be an NE, then E(x, ȳ) ≤ E(x̄, ȳ) ≤ E(x̄, y), implying maxx E(x, ȳ) =
E(x̄, ȳ) = miny E(x̄, y). The equalities hold because x̄ and ȳ are in the sets over which the optimizations are taken.

Proposition 2. The game value is unique.

Proof. Let (x̄, ȳ), (x′, y′) be two optimal solutions with game values u = E(x̄, ȳ), v = E(x′, y′), respectively. Then by
definition, u = E(x̄, ȳ) ≤ E(x̄, y′) ≤ E(x′, y′) = v because (x̄, ȳ) is an NE for the first inequality and (x′, y′) is an NE
for the second inequality. Since u, v are two arbitrary NEs, we have by the same argument v ≤ u, showing u = v.

Lemma 1. Let S be the simplex defined by wi ≥ 0 for all i and
∑

wi = 1, then maxw∈S cTw = max1≤i≤k{ci}. Similarly,
minw∈S cTw = min1≤i≤k{ci}.

Proof. Consider it as an LP problem to optimize z = cTw sub.t.
∑

wi = 1, wi ≥ 0. The optimal values take place
at the corners point of the simplex. The corner points are ei whose entries are all zeros except for the ith entry which
is 1, and the value of the objective function at these corner points are exactly ci. Hence, max cTw = maxi{ci} and
min cTw = mini{ci} respectively.

Proposition 3. The dual LP problem for the LP problem of maxw = v sub.t. xTA ≥ v1T , x ≥ 0,
∑

i xi = 1 is min z = u
sub.t. Ay ≤ u1, y ≥ 0,

∑
j yj = 1. Therefore, the optimal value is the same and the solution of one problem is part of the

shadow price of the other.

Theorem 1. (x̄, ȳ) is an optimal game solution with the game value v̄ = E(x̄, ȳ) iff (x̄, v̄) is a solution to this LP problem:
max z = u sub.t. (subject to) xTA ≥ u1T , x ≥ 0,

∑
xi = 1, and (ȳ, v̄) is a solution to the dual LP problem: min z = u

sub.t. Ay ≤ u1, y ≥ 0,
∑

yj = 1.

Proof. Proof of the necessity condition: As an optimal game solution v̄ = E(x̄, ȳ) = miny E(x̄, y) = miny(x̄
TA)y =

minj{x̄TAj} by Lemma 1, which implies x̄TAj ≥ v̄ for all j and equivalently x̄TA ≥ v̄1T . That is, x̄, v̄ is a basic feasible
point for the LP problem max z = u sub.t. xTA ≥ u1T with x ≥ 0,

∑
xi = 1.

We claim x̄, v̄ must be an optimal solution to the LP problem. If not, there is an x′ and u such that x′TA ≥ u1T

with u > v̄ = E(x̄, ȳ). That is minj{x′TAj} ≥ u > v̄ componentwise. By Lemma 1, we have miny E(x′, y) =
miny(x

′TA)y = minj{x′TAj} ≥ u > v̄ = E(x̄, ȳ). Since E(x′, ȳ) ≥ miny E(x′, y) ≥ u > v̄ = E(x̄, ȳ), this
contradicts the property that (x̄, ȳ) is an NE. This proves the necessary condition.

Conversely, because x̄, ȳ are the optimal solutions for the dual pair with the optimal value v̄, from x̄TA ≥ v̄1T we have
E(x̄, ȳ) = (x̄TA)ȳ ≥ (v̄1T )y = v̄(1T y) = v̄ and from Aȳ ≤ v̄1 we have E(x̄, ȳ) = x̄T (Aȳ) ≤ xT (v̄1) = v̄ and hence
E(x̄, ȳ) = v̄. Also, for any x, E(x, ȳ) = xT (Aȳ) ≤ v̄ = E(x̄, ȳ) and for any y, E(x̄, y) = (x̄TA)y ≥ v̄ = E(x̄, ȳ),
showing (x̄, ȳ) is an optimal game solution with the game value v̄.

Theorem 2. Let (x̄, ȳ) be an NE, then E(x̄, ȳ) = maxx[miny E(x, y)] over the mixed strategy probability vectors and
symmetrically E(x̄, ȳ) = miny[maxx E(x, y)].

Proof. Notice that the primal LP problem can be equivalently written as xTA ≥ u1T ⇔ minj x
TAj ≥ u ⇔ miny(x

TA)y ≥
u ⇔ miny E(x, y) ≥ u with the largest such u. This implies maxx(miny E(x, y)) ≥ maxx u = v̄ = E(x̄, ȳ).

We claim the equality maxx(miny E(x, y)) = maxx u must hold. If not, let w(x) = miny E(x, y) = minj{xTAj} ⇔
xTAj ≥ w(x) for all j and let x′ have the property that u′ = w(x′) = maxx w(x) but u′ > maxx u = v̄. Then
xTA ≥ w(x)1T for all x. In particular, x′TA ≥ w(x′)1T = u′1T , showing (x′, u′) is a basic feasible point to the LP
problem. Since v̄ is the maximal value of the LP solution, we must have u′ ≤ v̄, contradicting the assumption u′ > v̄.
Exactly the same argument applies to the dual problem.


